import torch import torchani import unittest import os import pickle import random path = os.path.dirname(os.path.realpath(__file__)) N = 97 class TestForce(unittest.TestCase): def setUp(self): self.tolerance = 1e-5 builtins = torchani.neurochem.Builtins() self.aev_computer = builtins.aev_computer nnp = builtins.models[0] self.model = torch.nn.Sequential(self.aev_computer, nnp) def random_skip(self): return False def transform(self, x): return x def testIsomers(self): for i in range(N): datafile = os.path.join(path, 'test_data/ANI1_subset/{}'.format(i)) with open(datafile, 'rb') as f: coordinates, species, _, _, _, forces = pickle.load(f) coordinates = torch.from_numpy(coordinates) species = torch.from_numpy(species) forces = torch.from_numpy(forces) coordinates = self.transform(coordinates) species = self.transform(species) forces = self.transform(forces) coordinates.requires_grad_(True) _, energies = self.model((species, coordinates)) derivative = torch.autograd.grad(energies.sum(), coordinates)[0] max_diff = (forces + derivative).abs().max().item() self.assertLess(max_diff, self.tolerance) def testPadding(self): species_coordinates = [] coordinates_forces = [] for i in range(N): datafile = os.path.join(path, 'test_data/ANI1_subset/{}'.format(i)) with open(datafile, 'rb') as f: coordinates, species, _, _, _, forces = pickle.load(f) coordinates = torch.from_numpy(coordinates) species = torch.from_numpy(species) forces = torch.from_numpy(forces) coordinates = self.transform(coordinates) species = self.transform(species) forces = self.transform(forces) coordinates.requires_grad_(True) species_coordinates.append((species, coordinates)) coordinates_forces.append((coordinates, forces)) species, coordinates = torchani.utils.pad_coordinates( species_coordinates) _, energies = self.model((species, coordinates)) energies = energies.sum() for coordinates, forces in coordinates_forces: derivative = torch.autograd.grad(energies, coordinates, retain_graph=True)[0] max_diff = (forces + derivative).abs().max().item() self.assertLess(max_diff, self.tolerance) def testNIST(self): datafile = os.path.join(path, 'test_data/NIST/all') with open(datafile, 'rb') as f: data = pickle.load(f) for coordinates, species, _, _, _, forces in data: if self.random_skip(): continue coordinates = torch.from_numpy(coordinates).to(torch.float) \ .requires_grad_(True) species = torch.from_numpy(species) forces = torch.from_numpy(forces).to(torch.float) _, energies = self.model((species, coordinates)) derivative = torch.autograd.grad(energies.sum(), coordinates)[0] max_diff = (forces + derivative).abs().max().item() self.assertLess(max_diff, self.tolerance) class TestForceASEComputer(TestForce): def setUp(self): super(TestForceASEComputer, self).setUp() def transform(self, x): """To reduce the size of test cases for faster test speed""" return x[:2, ...] def random_skip(self): """To reduce the size of test cases for faster test speed""" return random.random() < 0.95 if __name__ == '__main__': unittest.main()