import torch import torchani import unittest import os import pickle import math import random path = os.path.dirname(os.path.realpath(__file__)) N = 97 class TestEnergies(unittest.TestCase): def setUp(self): self.tolerance = 5e-5 builtins = torchani.neurochem.Builtins() self.aev_computer = builtins.aev_computer nnp = builtins.models[0] shift_energy = builtins.energy_shifter self.model = torch.nn.Sequential(self.aev_computer, nnp, shift_energy) def random_skip(self): return False def transform(self, x): return x def testIsomers(self): for i in range(N): datafile = os.path.join(path, 'test_data/ANI1_subset/{}'.format(i)) with open(datafile, 'rb') as f: coordinates, species, _, _, energies, _ = pickle.load(f) coordinates = torch.from_numpy(coordinates).to(torch.float) species = torch.from_numpy(species) energies = torch.from_numpy(energies).to(torch.float) coordinates = self.transform(coordinates) species = self.transform(species) energies = self.transform(energies) _, energies_ = self.model((species, coordinates)) max_diff = (energies - energies_).abs().max().item() self.assertLess(max_diff, self.tolerance) def testPadding(self): species_coordinates = [] energies = [] for i in range(N): datafile = os.path.join(path, 'test_data/ANI1_subset/{}'.format(i)) with open(datafile, 'rb') as f: coordinates, species, _, _, e, _ = pickle.load(f) coordinates = torch.from_numpy(coordinates).to(torch.float) species = torch.from_numpy(species) e = torch.from_numpy(e).to(torch.float) coordinates = self.transform(coordinates) species = self.transform(species) e = self.transform(e) species_coordinates.append((species, coordinates)) energies.append(e) species, coordinates = torchani.utils.pad_coordinates( species_coordinates) energies = torch.cat(energies) _, energies_ = self.model((species, coordinates)) max_diff = (energies - energies_).abs().max().item() self.assertLess(max_diff, self.tolerance) def testNIST(self): datafile = os.path.join(path, 'test_data/NIST/all') with open(datafile, 'rb') as f: data = pickle.load(f) for coordinates, species, _, _, e, _ in data: if self.random_skip(): continue coordinates = torch.from_numpy(coordinates).to(torch.float) species = torch.from_numpy(species) energies = torch.from_numpy(e).to(torch.float) _, energies_ = self.model((species, coordinates)) natoms = coordinates.shape[1] max_diff = (energies - energies_).abs().max().item() self.assertLess(max_diff / math.sqrt(natoms), self.tolerance) class TestEnergiesASEComputer(TestEnergies): def setUp(self): super(TestEnergiesASEComputer, self).setUp() self.aev_computer.neighborlist = torchani.ase.NeighborList() def transform(self, x): """To reduce the size of test cases for faster test speed""" return x[:2, ...] def random_skip(self): """To reduce the size of test cases for faster test speed""" return random.random() < 0.95 if __name__ == '__main__': unittest.main()