import torch import torchani import unittest import os import pickle import random path = os.path.dirname(os.path.realpath(__file__)) N = 97 class TestAEV(unittest.TestCase): def setUp(self): builtins = torchani.neurochem.Builtins() self.aev_computer = builtins.aev_computer self.radial_length = self.aev_computer.radial_length() self.tolerance = 1e-5 def random_skip(self): return False def transform(self, x): return x def _assertAEVEqual(self, expected_radial, expected_angular, aev): radial = aev[..., :self.radial_length] angular = aev[..., self.radial_length:] radial_diff = expected_radial - radial radial_max_error = torch.max(torch.abs(radial_diff)).item() angular_diff = expected_angular - angular angular_max_error = torch.max(torch.abs(angular_diff)).item() self.assertLess(radial_max_error, self.tolerance) self.assertLess(angular_max_error, self.tolerance) def testIsomers(self): for i in range(N): datafile = os.path.join(path, 'test_data/ANI1_subset/{}'.format(i)) with open(datafile, 'rb') as f: coordinates, species, expected_radial, expected_angular, _, _ \ = pickle.load(f) coordinates = torch.from_numpy(coordinates) species = torch.from_numpy(species) expected_radial = torch.from_numpy(expected_radial) expected_angular = torch.from_numpy(expected_angular) coordinates = self.transform(coordinates) species = self.transform(species) expected_radial = self.transform(expected_radial) expected_angular = self.transform(expected_angular) _, aev = self.aev_computer((species, coordinates)) self._assertAEVEqual(expected_radial, expected_angular, aev) def testPadding(self): species_coordinates = [] radial_angular = [] for i in range(N): datafile = os.path.join(path, 'test_data/ANI1_subset/{}'.format(i)) with open(datafile, 'rb') as f: coordinates, species, radial, angular, _, _ = pickle.load(f) coordinates = torch.from_numpy(coordinates) species = torch.from_numpy(species) radial = torch.from_numpy(radial) angular = torch.from_numpy(angular) coordinates = self.transform(coordinates) species = self.transform(species) radial = self.transform(radial) angular = self.transform(angular) species_coordinates.append((species, coordinates)) radial_angular.append((radial, angular)) species, coordinates = torchani.utils.pad_coordinates( species_coordinates) _, aev = self.aev_computer((species, coordinates)) start = 0 for expected_radial, expected_angular in radial_angular: conformations = expected_radial.shape[0] atoms = expected_radial.shape[1] aev_ = aev[start:start+conformations, 0:atoms] start += conformations self._assertAEVEqual(expected_radial, expected_angular, aev_) def testNIST(self): datafile = os.path.join(path, 'test_data/NIST/all') with open(datafile, 'rb') as f: data = pickle.load(f) for coordinates, species, radial, angular, _, _ in data: if self.random_skip(): continue coordinates = torch.from_numpy(coordinates).to(torch.float) species = torch.from_numpy(species) radial = torch.from_numpy(radial).to(torch.float) angular = torch.from_numpy(angular).to(torch.float) _, aev = self.aev_computer((species, coordinates)) self._assertAEVEqual(radial, angular, aev) class TestAEVASENeighborList(TestAEV): def setUp(self): super(TestAEVASENeighborList, self).setUp() self.aev_computer.neighborlist = torchani.ase.NeighborList() def transform(self, x): """To reduce the size of test cases for faster test speed""" return x[:2, ...] def random_skip(self): """To reduce the size of test cases for faster test speed""" return random.random() < 0.95 if __name__ == '__main__': unittest.main()