import torch import torchani import unittest import os import pickle from torchani.testing import TestCase path = os.path.dirname(os.path.realpath(__file__)) N = 97 class TestCorrectInput(TestCase): def setUp(self): self.model = torchani.models.ANI1x(model_index=0, periodic_table_index=False) self.converter = torchani.nn.SpeciesConverter(['H', 'C', 'N', 'O']) self.aev_computer = self.model.aev_computer self.ani_model = self.model.neural_networks def testUnknownSpecies(self): # unsupported atomic number raises a value error self.assertRaises(ValueError, self.converter, (torch.tensor([[1, 1, 7, 10]]), torch.zeros((1, 4, 3)))) # larger index than supported by the model raises a value error self.assertRaises(ValueError, self.model, (torch.tensor([[0, 1, 2, 4]]), torch.zeros((1, 4, 3)))) def testIncorrectShape(self): # non matching shapes between species and coordinates self.assertRaises(AssertionError, self.model, (torch.tensor([[0, 1, 2, 3]]), torch.zeros((1, 3, 3)))) self.assertRaises(AssertionError, self.aev_computer, (torch.tensor([[0, 1, 2, 3]]), torch.zeros((1, 3, 3)))) self.assertRaises(AssertionError, self.ani_model, (torch.tensor([[0, 1, 2, 3]]), torch.zeros((1, 3, 384)))) self.assertRaises(AssertionError, self.model, (torch.tensor([[0, 1, 2, 3]]), torch.zeros((1, 4, 4)))) self.assertRaises(AssertionError, self.model, (torch.tensor([0, 1, 2, 3]), torch.zeros((4, 3)))) class TestEnergies(TestCase): # tests the predicions for a torchani.nn.Sequential(AEVComputer(), # ANIModel(), EnergyShifter()) against precomputed values def setUp(self): model = torchani.models.ANI1x(model_index=0) self.aev_computer = model.aev_computer self.nnp = model.neural_networks self.energy_shifter = model.energy_shifter self.model = torchani.nn.Sequential(self.aev_computer, self.nnp, self.energy_shifter) def testIsomers(self): for i in range(N): datafile = os.path.join(path, 'test_data/ANI1_subset/{}'.format(i)) with open(datafile, 'rb') as f: coordinates, species, _, _, energies, _ = pickle.load(f) coordinates = torch.from_numpy(coordinates).to(torch.float) species = torch.from_numpy(species) energies = torch.from_numpy(energies).to(torch.float) energies_ = self.model((species, coordinates)).energies self.assertEqual(energies, energies_, exact_dtype=False) def testPadding(self): species_coordinates = [] energies = [] for i in range(N): datafile = os.path.join(path, 'test_data/ANI1_subset/{}'.format(i)) with open(datafile, 'rb') as f: coordinates, species, _, _, e, _ = pickle.load(f) coordinates = torch.from_numpy(coordinates).to(torch.float) species = torch.from_numpy(species) e = torch.from_numpy(e).to(torch.float) species_coordinates.append( torchani.utils.broadcast_first_dim({'species': species, 'coordinates': coordinates})) energies.append(e) species_coordinates = torchani.utils.pad_atomic_properties( species_coordinates) energies = torch.cat(energies) energies_ = self.model((species_coordinates['species'], species_coordinates['coordinates'])).energies self.assertEqual(energies, energies_, exact_dtype=False) class TestEnergiesEnergyShifterJIT(TestEnergies): # only JIT compile the energy shifter and repeat all tests def setUp(self): super().setUp() self.energy_shifter = torch.jit.script(self.energy_shifter) self.model = torchani.nn.Sequential(self.aev_computer, self.nnp, self.energy_shifter) class TestEnergiesANIModelJIT(TestEnergies): # only JIT compile the ANI nnp ANIModel and repeat all tests def setUp(self): super().setUp() self.nnp = torch.jit.script(self.nnp) self.model = torchani.nn.Sequential(self.aev_computer, self.nnp, self.energy_shifter) class TestEnergiesJIT(TestEnergies): # JIT compile the whole model and repeat all tests def setUp(self): super().setUp() self.model = torch.jit.script(self.model) if __name__ == '__main__': unittest.main()