# -*- coding: utf-8 -*- """ Computing Energy and Force Using Models Inside Model Zoo ======================================================== TorchANI has a model zoo trained by NeuroChem. These models are shipped with TorchANI and can be used directly. """ ############################################################################### # To begin with, let's first import the modules we will use: import torch import torchani ############################################################################### # Let's now manually specify the device we want TorchANI to run: device = torch.device('cpu') ############################################################################### # Let's now load the built-in ANI-1ccx models. The builtin ANI-1ccx contains 8 # models trained with diffrent initialization. Predicting the energy and force # using the average of the 8 models outperform using a single model, so it is # always recommended to use an ensemble, unless the speed of computation is an # issue in your application. model = torchani.models.ANI1ccx() ############################################################################### # Now let's define the coordinate and species. If you just want to compute the # energy and force for a single structure like in this example, you need to # make the coordinate tensor has shape ``(1, Na, 3)`` and species has shape # ``(1, Na)``, where ``Na`` is the number of atoms in the molecule, the # preceding ``1`` in the shape is here to support batch processing like in # training. If you have ``N`` different structures to compute, then make it # ``N``. coordinates = torch.tensor([[[0.03192167, 0.00638559, 0.01301679], [-0.83140486, 0.39370209, -0.26395324], [-0.66518241, -0.84461308, 0.20759389], [0.45554739, 0.54289633, 0.81170881], [0.66091919, -0.16799635, -0.91037834]]], requires_grad=True, device=device) species = model.species_to_tensor('CHHHH').to(device).unsqueeze(0) ############################################################################### # Now let's compute energy and force: _, energy = model((species, coordinates)) derivative = torch.autograd.grad(energy.sum(), coordinates)[0] force = -derivative ############################################################################### # And print to see the result: print('Energy:', energy.item()) print('Force:', force.squeeze())