# -*- coding: utf-8 -*- """ Using TorchScript to serialize and deploy model =============================================== Models in TorchANI's model zoo support TorchScript. TorchScript is a way to create serializable and optimizable models from PyTorch code. It allows users to saved their models from a Python process and loaded in a process where there is no Python dependency. """ ############################################################################### # To begin with, let's first import the modules we will use: import torch import torchani ############################################################################### # Let's now load the built-in ANI-1ccx models. The builtin ANI-1ccx contains 8 # models trained with diffrent initialization. model = torchani.models.ANI1ccx() ############################################################################### # It is very easy to compile and save the model using `torch.jit`. compiled_model = torch.jit.script(model) torch.jit.save(compiled_model, 'compiled_model.pt') ############################################################################### # Besides compiling the ensemble, it is also possible to compile a single network compiled_model0 = torch.jit.script(model[0]) torch.jit.save(compiled_model0, 'compiled_model0.pt') ############################################################################### # For testing purposes, we will now load the models we just saved and see if they # produces the same output as the original model: loaded_compiled_model = torch.jit.load('compiled_model.pt') loaded_compiled_model0 = torch.jit.load('compiled_model0.pt') ############################################################################### # We use the molecule below to test: coordinates = torch.tensor([[[0.03192167, 0.00638559, 0.01301679], [-0.83140486, 0.39370209, -0.26395324], [-0.66518241, -0.84461308, 0.20759389], [0.45554739, 0.54289633, 0.81170881], [0.66091919, -0.16799635, -0.91037834]]]) species = model.species_to_tensor('CHHHH').unsqueeze(0) ############################################################################### # And here is the result: energies_ensemble = model((species, coordinates)).energies energies_single = model[0]((species, coordinates)).energies energies_ensemble_jit = loaded_compiled_model((species, coordinates)).energies energies_single_jit = loaded_compiled_model0((species, coordinates)).energies print('Ensemble energy, eager mode vs loaded jit:', energies_ensemble.item(), energies_ensemble_jit.item()) print('Single network energy, eager mode vs loaded jit:', energies_single.item(), energies_single_jit.item())