Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
torchani
Commits
f73d8ae1
Unverified
Commit
f73d8ae1
authored
Dec 11, 2018
by
Gao, Xiang
Committed by
GitHub
Dec 11, 2018
Browse files
Use ignite.contrib.handlers.ProgressBar (#151)
parent
fa852d5d
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
9 additions
and
33 deletions
+9
-33
examples/cache_aev.py
examples/cache_aev.py
+5
-16
examples/nnp_training.py
examples/nnp_training.py
+4
-17
No files found.
examples/cache_aev.py
View file @
f73d8ae1
...
...
@@ -15,11 +15,10 @@ AEVs. This example shows how to use disk cache to boost training
import
torch
import
ignite
import
torchani
import
tqdm
import
timeit
import
tensorboardX
import
os
import
sy
s
import
ignite.contrib.handler
s
# training and validation set
...
...
@@ -119,20 +118,10 @@ evaluator = ignite.engine.create_supervised_evaluator(container, metrics={
})
@
trainer
.
on
(
ignite
.
engine
.
Events
.
EPOCH_STARTED
)
def
init_tqdm
(
trainer
):
trainer
.
state
.
tqdm
=
tqdm
.
tqdm
(
total
=
len
(
training
),
file
=
sys
.
stdout
,
desc
=
'epoch'
)
@
trainer
.
on
(
ignite
.
engine
.
Events
.
ITERATION_COMPLETED
)
def
update_tqdm
(
trainer
):
trainer
.
state
.
tqdm
.
update
(
1
)
@
trainer
.
on
(
ignite
.
engine
.
Events
.
EPOCH_COMPLETED
)
def
finalize_tqdm
(
trainer
):
trainer
.
state
.
tqdm
.
close
()
###############################################################################
# Let's add a progress bar for the trainer
pbar
=
ignite
.
contrib
.
handlers
.
ProgressBar
()
pbar
.
attach
(
trainer
)
def
hartree2kcal
(
x
):
...
...
examples/nnp_training.py
View file @
f73d8ae1
...
...
@@ -13,11 +13,10 @@ This example shows how to use TorchANI train your own neural network potential.
import
torch
import
ignite
import
torchani
import
tqdm
import
timeit
import
tensorboardX
import
os
import
sy
s
import
ignite.contrib.handler
s
###############################################################################
...
...
@@ -153,21 +152,9 @@ evaluator = ignite.engine.create_supervised_evaluator(container, metrics={
###############################################################################
# Now let's register some event handlers to work with tqdm to display progress:
@
trainer
.
on
(
ignite
.
engine
.
Events
.
EPOCH_STARTED
)
def
init_tqdm
(
trainer
):
trainer
.
state
.
tqdm
=
tqdm
.
tqdm
(
total
=
len
(
training
),
file
=
sys
.
stdout
,
desc
=
'epoch'
)
@
trainer
.
on
(
ignite
.
engine
.
Events
.
ITERATION_COMPLETED
)
def
update_tqdm
(
trainer
):
trainer
.
state
.
tqdm
.
update
(
1
)
@
trainer
.
on
(
ignite
.
engine
.
Events
.
EPOCH_COMPLETED
)
def
finalize_tqdm
(
trainer
):
trainer
.
state
.
tqdm
.
close
()
# Let's add a progress bar for the trainer
pbar
=
ignite
.
contrib
.
handlers
.
ProgressBar
()
pbar
.
attach
(
trainer
)
###############################################################################
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment