Unverified Commit f73d8ae1 authored by Gao, Xiang's avatar Gao, Xiang Committed by GitHub
Browse files

Use ignite.contrib.handlers.ProgressBar (#151)

parent fa852d5d
......@@ -15,11 +15,10 @@ AEVs. This example shows how to use disk cache to boost training
import torch
import ignite
import torchani
import tqdm
import timeit
import tensorboardX
import os
import sys
import ignite.contrib.handlers
# training and validation set
......@@ -119,20 +118,10 @@ evaluator = ignite.engine.create_supervised_evaluator(container, metrics={
})
@trainer.on(ignite.engine.Events.EPOCH_STARTED)
def init_tqdm(trainer):
trainer.state.tqdm = tqdm.tqdm(total=len(training),
file=sys.stdout, desc='epoch')
@trainer.on(ignite.engine.Events.ITERATION_COMPLETED)
def update_tqdm(trainer):
trainer.state.tqdm.update(1)
@trainer.on(ignite.engine.Events.EPOCH_COMPLETED)
def finalize_tqdm(trainer):
trainer.state.tqdm.close()
###############################################################################
# Let's add a progress bar for the trainer
pbar = ignite.contrib.handlers.ProgressBar()
pbar.attach(trainer)
def hartree2kcal(x):
......
......@@ -13,11 +13,10 @@ This example shows how to use TorchANI train your own neural network potential.
import torch
import ignite
import torchani
import tqdm
import timeit
import tensorboardX
import os
import sys
import ignite.contrib.handlers
###############################################################################
......@@ -153,21 +152,9 @@ evaluator = ignite.engine.create_supervised_evaluator(container, metrics={
###############################################################################
# Now let's register some event handlers to work with tqdm to display progress:
@trainer.on(ignite.engine.Events.EPOCH_STARTED)
def init_tqdm(trainer):
trainer.state.tqdm = tqdm.tqdm(total=len(training),
file=sys.stdout, desc='epoch')
@trainer.on(ignite.engine.Events.ITERATION_COMPLETED)
def update_tqdm(trainer):
trainer.state.tqdm.update(1)
@trainer.on(ignite.engine.Events.EPOCH_COMPLETED)
def finalize_tqdm(trainer):
trainer.state.tqdm.close()
# Let's add a progress bar for the trainer
pbar = ignite.contrib.handlers.ProgressBar()
pbar.attach(trainer)
###############################################################################
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment