Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
torchani
Commits
7f660099
Commit
7f660099
authored
Aug 07, 2018
by
Gao, Xiang
Browse files
log training rmse and best validation rmse
parent
3e296069
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
17 additions
and
1 deletion
+17
-1
examples/nnp_training.py
examples/nnp_training.py
+17
-1
No files found.
examples/nnp_training.py
View file @
7f660099
...
@@ -22,7 +22,10 @@ parser.add_argument('--model_checkpoint',
...
@@ -22,7 +22,10 @@ parser.add_argument('--model_checkpoint',
default
=
'model.pt'
)
default
=
'model.pt'
)
parser
.
add_argument
(
'-m'
,
'--max_epochs'
,
parser
.
add_argument
(
'-m'
,
'--max_epochs'
,
help
=
'Maximum number of epoches'
,
help
=
'Maximum number of epoches'
,
default
=
10
,
type
=
int
)
default
=
100
,
type
=
int
)
parser
.
add_argument
(
'--training_rmse_every'
,
help
=
'Compute training RMSE every epoches'
,
default
=
20
,
type
=
int
)
parser
.
add_argument
(
'-d'
,
'--device'
,
parser
.
add_argument
(
'-d'
,
'--device'
,
help
=
'Device of modules and tensors'
,
help
=
'Device of modules and tensors'
,
default
=
(
'cuda'
if
torch
.
cuda
.
is_available
()
else
'cpu'
))
default
=
(
'cuda'
if
torch
.
cuda
.
is_available
()
else
'cpu'
))
...
@@ -94,12 +97,25 @@ def finalize_tqdm(trainer):
...
@@ -94,12 +97,25 @@ def finalize_tqdm(trainer):
@
trainer
.
on
(
ignite
.
engine
.
Events
.
EPOCH_STARTED
)
@
trainer
.
on
(
ignite
.
engine
.
Events
.
EPOCH_STARTED
)
def
validation_and_checkpoint
(
trainer
):
def
validation_and_checkpoint
(
trainer
):
# compute validation RMSE
evaluator
.
run
(
validation
)
evaluator
.
run
(
validation
)
metrics
=
evaluator
.
state
.
metrics
metrics
=
evaluator
.
state
.
metrics
rmse
=
hartree2kcal
(
metrics
[
'RMSE'
])
rmse
=
hartree2kcal
(
metrics
[
'RMSE'
])
writer
.
add_scalar
(
'validation_rmse_vs_epoch'
,
rmse
,
trainer
.
state
.
epoch
)
writer
.
add_scalar
(
'validation_rmse_vs_epoch'
,
rmse
,
trainer
.
state
.
epoch
)
# compute training RMSE
if
trainer
.
state
.
epoch
%
parser
.
training_rmse_every
==
0
:
evaluator
.
run
(
training
)
metrics
=
evaluator
.
state
.
metrics
rmse
=
hartree2kcal
(
metrics
[
'RMSE'
])
writer
.
add_scalar
(
'training_rmse_vs_epoch'
,
rmse
,
trainer
.
state
.
epoch
)
# handle best validation RMSE
if
rmse
<
trainer
.
state
.
best_validation_rmse
:
if
rmse
<
trainer
.
state
.
best_validation_rmse
:
trainer
.
state
.
best_validation_rmse
=
rmse
trainer
.
state
.
best_validation_rmse
=
rmse
writer
.
add_scalar
(
'best_validation_rmse_vs_epoch'
,
rmse
,
trainer
.
state
.
epoch
)
torch
.
save
(
nnp
.
state_dict
(),
parser
.
model_checkpoint
)
torch
.
save
(
nnp
.
state_dict
(),
parser
.
model_checkpoint
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment