Commit 2359a387 authored by Xiang Gao's avatar Xiang Gao Committed by Gao, Xiang
Browse files

torchani 0.1

parents
import torchani
import unittest
import torch
import cntk
import tempfile
import os
import numpy
class TestONNX(unittest.TestCase):
def setUp(self):
self.tolerance = 1e-5
def testONNX(self): # not ready yet
return
# molecule structure: CH2OH
species = ['C', 'H', 'H', 'O', 'H']
coordinates = [
[0, 0, 0], # C
[0, 0, 1], # H
[1, 0, 0], # H
[0, 1, 0], # O
[0, 1, 1], # H
]
# compute aev using pytorch
aev_computer = torchani.AEV()
coordinates = torch.FloatTensor(coordinates)
coordinates = coordinates.unsqueeze(0)
radial_aev, angular_aev = aev_computer(coordinates, species)
aev = torch.cat([radial_aev, angular_aev], dim=2).numpy()
# temp directory storing exported networks
tmpdir = tempfile.TemporaryDirectory()
tmpdirname = tmpdir.name
####################################################
# Step 1: use pytorch to export all graphs into ONNX
####################################################
# TODO: exporting AEV to ONNX is not supported yet,
# due to lack of operators in ONNX. Add this support
# when ONNX support this operation.
aev_computer.export_radial_subaev_onnx(
os.path.join(tmpdirname, 'radial.onnx'))
# Export neural network potential to ONNX
model = torchani.ModelOnAEV(aev_computer, from_nc=None)
model.export_onnx(tmpdirname)
#####################################
# Step 2: import from ONNX using CNTK
#####################################
networks = {}
for s in aev_computer.species:
nn_onnx = os.path.join(tmpdirname, '{}.proto'.format(s))
networks[s] = cntk.Function.load(
nn_onnx, format=cntk.ModelFormat.ONNX)
###################################
# Step 3: compute energy using CNTX
###################################
energy1 = 0
for i in range(len(species)):
atomic_aev = aev[:, i, :]
network = networks[species[i]]
atomic_energy = network(atomic_aev)[0, 0, 0]
energy1 += atomic_energy
###############################################
# Test only: check the CNTK result with pytorch
###############################################
energy2 = model(coordinates, species).squeeze().item()
self.assertLessEqual(abs(energy1 - energy2), self.tolerance)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment