Unverified Commit 14b9a395 authored by Rocco Meli's avatar Rocco Meli Committed by GitHub
Browse files

Change AdamW from TorchANI to PyTorch (#464)



* switch AdamW from torchany to pytorch

* fix __init__
Co-authored-by: default avatarFarhad Ramezanghorbani <farhadrgh@users.noreply.github.com>
parent de9020d1
......@@ -65,14 +65,6 @@ ASE Interface
.. automodule:: torchani.ase
.. autoclass:: torchani.ase.Calculator
TorchANI Optimizater
====================
.. automodule:: torchani.optim
.. autoclass:: torchani.optim.AdamW
Units
=====
......
......@@ -178,7 +178,7 @@ model = torchani.nn.Sequential(aev_computer, nn).to(device)
# .. _Decoupled Weight Decay Regularization:
# https://arxiv.org/abs/1711.05101
AdamW = torchani.optim.AdamW([
AdamW = torch.optim.AdamW([
# H networks
{'params': [H_network[0].weight]},
{'params': [H_network[2].weight], 'weight_decay': 0.00001},
......
......@@ -135,7 +135,7 @@ model = torchani.nn.Sequential(aev_computer, nn).to(device)
# Here we will use Adam with weight decay for the weights and Stochastic Gradient
# Descent for biases.
AdamW = torchani.optim.AdamW([
AdamW = torch.optim.AdamW([
# H networks
{'params': [H_network[0].weight]},
{'params': [H_network[2].weight], 'weight_decay': 0.00001},
......
......@@ -29,7 +29,6 @@ from .aev import AEVComputer
from . import utils
from . import neurochem
from . import models
from . import optim
from . import units
from pkg_resources import get_distribution, DistributionNotFound
......@@ -40,7 +39,7 @@ except DistributionNotFound:
pass
__all__ = ['AEVComputer', 'EnergyShifter', 'ANIModel', 'Ensemble', 'SpeciesConverter',
'utils', 'neurochem', 'models', 'optim', 'units']
'utils', 'neurochem', 'models', 'units']
try:
from . import ase # noqa: F401
......
......@@ -14,7 +14,7 @@ import sys
from ..nn import ANIModel, Ensemble, Gaussian, Sequential
from ..utils import EnergyShifter, ChemicalSymbolsToInts
from ..aev import AEVComputer
from ..optim import AdamW
from torch.optim import AdamW
from collections import OrderedDict
from torchani.units import hartree2kcalmol
......
"""AdamW implementation"""
import math
import torch
from torch.optim.optimizer import Optimizer
# Copied and modified from: https://github.com/pytorch/pytorch/pull/4429
class AdamW(Optimizer):
r"""Implements AdamW algorithm.
It has been proposed in `Decoupled Weight Decay Regularization`_.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay factor (default: 0)
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
algorithm from the paper `On the Convergence of Adam and Beyond`_
(default: False)
.. _Adam\: A Method for Stochastic Optimization:
https://arxiv.org/abs/1412.6980
.. _Decoupled Weight Decay Regularization:
https://arxiv.org/abs/1711.05101
.. _On the Convergence of Adam and Beyond:
https://openreview.net/forum?id=ryQu7f-RZ
"""
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay=0, amsgrad=False):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
defaults = dict(lr=lr, betas=betas, eps=eps,
weight_decay=weight_decay, amsgrad=amsgrad)
super(AdamW, self).__init__(params, defaults)
def __setstate__(self, state):
super(AdamW, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('amsgrad', False)
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
# Perform stepweight decay
# p.data.mul_(1 - group['lr'] * group['weight_decay']) # AdamW
p.data.mul_(1 - group['weight_decay']) # Neurochem
# Perform optimization step
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
amsgrad = group['amsgrad']
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p.data)
if amsgrad:
# Maintains max of all exp. moving avg. of sq. grad. values
state['max_exp_avg_sq'] = torch.zeros_like(p.data)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
if amsgrad:
max_exp_avg_sq = state['max_exp_avg_sq']
beta1, beta2 = group['betas']
state['step'] += 1
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(1 - beta1, grad)
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
if amsgrad:
# Maintains the maximum of all 2nd moment running avg. till now
torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
# Use the max. for normalizing running avg. of gradient
denom = (max_exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
else:
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
step_size = group['lr'] / bias_correction1
p.data.addcdiv_(-step_size, exp_avg, denom)
return loss
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment