import pytest import torch from torch.autograd import Variable, gradcheck from torch_spline_conv import spline_conv from torch_spline_conv.functions.spline_weighting import SplineWeighting from torch_spline_conv.functions.ffi import implemented_degrees from .utils import tensors, Tensor @pytest.mark.parametrize('tensor', tensors) def test_spline_conv_cpu(tensor): x = Tensor(tensor, [[9, 10], [1, 2], [3, 4], [5, 6], [7, 8]]) edge_index = torch.LongTensor([[0, 0, 0, 0], [1, 2, 3, 4]]) pseudo = [[0.25, 0.125], [0.25, 0.375], [0.75, 0.625], [0.75, 0.875]] pseudo = Tensor(tensor, pseudo) weight = torch.arange(0.5, 0.5 * 25, step=0.5, out=x.new()).view(12, 2, 1) kernel_size = torch.LongTensor([3, 4]) is_open_spline = torch.ByteTensor([1, 0]) root_weight = torch.arange(12.5, 13.5, step=0.5, out=x.new()).view(2, 1) bias = Tensor(tensor, [1]) output = spline_conv(x, edge_index, pseudo, weight, kernel_size, is_open_spline, root_weight, 1, bias) edgewise_output = [ 1 * 0.25 * (0.5 + 1.5 + 4.5 + 5.5) + 2 * 0.25 * (1 + 2 + 5 + 6), 3 * 0.25 * (1.5 + 2.5 + 5.5 + 6.5) + 4 * 0.25 * (2 + 3 + 6 + 7), 5 * 0.25 * (6.5 + 7.5 + 10.5 + 11.5) + 6 * 0.25 * (7 + 8 + 11 + 12), 7 * 0.25 * (7.5 + 4.5 + 11.5 + 8.5) + 8 * 0.25 * (8 + 5 + 12 + 9), ] expected_output = [ [1 + 12.5 * 9 + 13 * 10 + sum(edgewise_output) / 4], [1 + 12.5 * 1 + 13 * 2], [1 + 12.5 * 3 + 13 * 4], [1 + 12.5 * 5 + 13 * 6], [1 + 12.5 * 7 + 13 * 8], ] assert output.tolist() == expected_output x, weight, pseudo = Variable(x), Variable(weight), Variable(pseudo) root_weight, bias = Variable(root_weight), Variable(bias) output = spline_conv(x, edge_index, pseudo, weight, kernel_size, is_open_spline, root_weight, 1, bias) assert output.data.tolist() == expected_output def test_spline_weighting_backward_cpu(): for degree in implemented_degrees.keys(): kernel_size = torch.LongTensor([5, 5, 5]) is_open_spline = torch.ByteTensor([1, 0, 1]) op = SplineWeighting(kernel_size, is_open_spline, degree) x = torch.DoubleTensor(16, 2).uniform_(-1, 1) x = Variable(x, requires_grad=True) pseudo = torch.DoubleTensor(16, 3).uniform_(0, 1) pseudo = Variable(torch.DoubleTensor(pseudo), requires_grad=True) weight = torch.DoubleTensor(25, 2, 4).uniform_(-1, 1) weight = Variable(weight, requires_grad=True) assert gradcheck(op, (x, pseudo, weight), eps=1e-6, atol=1e-4) is True @pytest.mark.skipif(not torch.cuda.is_available(), reason='no CUDA') @pytest.mark.parametrize('tensor', tensors) def test_spline_conv_gpu(tensor): x = Tensor(tensor, [[9, 10], [1, 2], [3, 4], [5, 6], [7, 8]]) edge_index = torch.LongTensor([[0, 0, 0, 0], [1, 2, 3, 4]]) pseudo = [[0.25, 0.125], [0.25, 0.375], [0.75, 0.625], [0.75, 0.875]] pseudo = Tensor(tensor, pseudo) weight = torch.arange(0.5, 0.5 * 25, step=0.5, out=x.new()).view(12, 2, 1) kernel_size = torch.LongTensor([3, 4]) is_open_spline = torch.ByteTensor([1, 0]) root_weight = torch.arange(12.5, 13.5, step=0.5, out=x.new()).view(2, 1) bias = Tensor(tensor, [1]) expected_output = spline_conv(x, edge_index, pseudo, weight, kernel_size, is_open_spline, root_weight, 1, bias) x, edge_index, pseudo = x.cuda(), edge_index.cuda(), pseudo.cuda() weight, kernel_size = weight.cuda(), kernel_size.cuda() is_open_spline, root_weight = is_open_spline.cuda(), root_weight.cuda() bias = bias.cuda() output = spline_conv(x, edge_index, pseudo, weight, kernel_size, is_open_spline, root_weight, 1, bias) assert output.cpu().tolist() == expected_output.tolist()