[pypi-image]: https://badge.fury.io/py/torch-spline-conv.svg [pypi-url]: https://pypi.python.org/pypi/torch-spline-conv [build-image]: https://travis-ci.org/rusty1s/pytorch_spline_conv.svg?branch=master [build-url]: https://travis-ci.org/rusty1s/pytorch_spline_conv [coverage-image]: https://codecov.io/gh/rusty1s/pytorch_spline_conv/branch/master/graph/badge.svg [coverage-url]: https://codecov.io/github/rusty1s/pytorch_spline_conv?branch=master # Spline-Based Convolution Operator of SplineCNN [![PyPI Version][pypi-image]][pypi-url] [![Build Status][build-image]][build-url] [![Code Coverage][coverage-image]][coverage-url] -------------------------------------------------------------------------------- This is a PyTorch implementation of the spline-based convolution operator of SplineCNN, as described in our paper: Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich Müller: [SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels](https://arxiv.org/abs/1711.08920) (CVPR 2018) The operator works on all floating point data types and is implemented both for CPU and GPU. ## Installation ### Binaries We provide pip wheels for all major OS/PyTorch/CUDA combinations, see [here](https://pytorch-geometric.com/whl). #### PyTorch 1.7.0 To install the binaries for PyTorch 1.7.0, simply run ``` pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-1.7.0+${CUDA}.html ``` where `${CUDA}` should be replaced by either `cpu`, `cu92`, `cu101`, `cu102`, or `cu110` depending on your PyTorch installation. | | `cpu` | `cu92` | `cu101` | `cu102` | `cu110` | |-------------|-------|--------|---------|---------|---------| | **Linux** | ✅ | ✅ | ✅ | ✅ | ✅ | | **Windows** | ✅ | ❌ | ✅ | ✅ | ✅ | | **macOS** | ✅ | | | | | #### PyTorch 1.6.0 To install the binaries for PyTorch 1.6.0, simply run ``` pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-1.6.0+${CUDA}.html ``` where `${CUDA}` should be replaced by either `cpu`, `cu92`, `cu101` or `cu102` depending on your PyTorch installation. | | `cpu` | `cu92` | `cu101` | `cu102` | |-------------|-------|--------|---------|---------| | **Linux** | ✅ | ✅ | ✅ | ✅ | | **Windows** | ✅ | ❌ | ✅ | ✅ | | **macOS** | ✅ | | | | **Note:** Binaries of older versions are also provided for PyTorch 1.4.0 and PyTorch 1.5.0 (following the same procedure). ### From source Ensure that at least PyTorch 1.4.0 is installed and verify that `cuda/bin` and `cuda/include` are in your `$PATH` and `$CPATH` respectively, *e.g.*: ``` $ python -c "import torch; print(torch.__version__)" >>> 1.4.0 $ echo $PATH >>> /usr/local/cuda/bin:... $ echo $CPATH >>> /usr/local/cuda/include:... ``` Then run: ``` pip install torch-spline-conv ``` When running in a docker container without NVIDIA driver, PyTorch needs to evaluate the compute capabilities and may fail. In this case, ensure that the compute capabilities are set via `TORCH_CUDA_ARCH_LIST`, *e.g.*: ``` export TORCH_CUDA_ARCH_LIST = "6.0 6.1 7.2+PTX 7.5+PTX" ``` ## Usage ```python from torch_spline_conv import spline_conv out = spline_conv(x, edge_index, pseudo, weight, kernel_size, is_open_spline, degree=1, norm=True, root_weight=None, bias=None) ``` Applies the spline-based convolution operator