import torch from torch.autograd import Variable, gradcheck from torch_spline_conv import spline_conv from torch_spline_conv.functions.utils import SplineWeighting, spline_basis x = torch.Tensor([[9, 10], [1, 2], [3, 4], [5, 6], [7, 8]]) index = torch.LongTensor([[0, 0, 0, 0], [1, 2, 3, 4]]) pseudo = [[0.25, 0.125], [0.25, 0.375], [0.75, 0.625], [0.75, 0.875]] pseudo = torch.Tensor(pseudo) weight = torch.arange(0.5, 0.5 * 25, step=0.5).view(12, 2, 1) kernel_size = torch.LongTensor([3, 4]) is_open_spline = torch.ByteTensor([1, 0]) root_weight = torch.arange(12.5, 13.5, step=0.5).view(2, 1) output = spline_conv(x, index, pseudo, weight, kernel_size, is_open_spline, root_weight) edgewise_output = [ 1 * 0.25 * (0.5 + 1.5 + 4.5 + 5.5) + 2 * 0.25 * (1 + 2 + 5 + 6), 3 * 0.25 * (1.5 + 2.5 + 5.5 + 6.5) + 4 * 0.25 * (2 + 3 + 6 + 7), 5 * 0.25 * (6.5 + 7.5 + 10.5 + 11.5) + 6 * 0.25 * (7 + 8 + 11 + 12), 7 * 0.25 * (7.5 + 4.5 + 11.5 + 8.5) + 8 * 0.25 * (8 + 5 + 12 + 9), ] expected_output = [ [12.5 * 9 + 13 * 10 + sum(edgewise_output) / 4], [12.5 * 1 + 13 * 2], [12.5 * 3 + 13 * 4], [12.5 * 5 + 13 * 6], [12.5 * 7 + 13 * 8], ] print(output.tolist(), expected_output) x = Variable(x, requires_grad=True) weight = Variable(weight, requires_grad=True) root_weight = Variable(root_weight, requires_grad=True) output = spline_conv(x, index, pseudo, weight, kernel_size, is_open_spline, root_weight) print(output.data.tolist()) x, pseudo, weight = x.data.double(), pseudo.double(), weight.data.double() x = x[index[1]] x = Variable(x, requires_grad=True) weight = Variable(weight, requires_grad=True) basis, weight_index = spline_basis(1, pseudo, kernel_size, is_open_spline, weight.size(0)) op = SplineWeighting(basis, weight_index) test = gradcheck(op, (x, weight), eps=1e-6, atol=1e-4) print(test)