[pypi-image]: https://badge.fury.io/py/torch-spline-conv.svg [pypi-url]: https://pypi.python.org/pypi/torch-spline-conv [build-image]: https://travis-ci.org/rusty1s/pytorch_spline_conv.svg?branch=master [build-url]: https://travis-ci.org/rusty1s/pytorch_spline_conv [coverage-image]: https://codecov.io/gh/rusty1s/pytorch_spline_conv/branch/master/graph/badge.svg [coverage-url]: https://codecov.io/github/rusty1s/pytorch_spline_conv?branch=master # PyTorch Spline-Based Convolution Operator of SplineCNN [![PyPI Version][pypi-image]][pypi-url] [![Build Status][build-image]][build-url] [![Code Coverage][coverage-image]][coverage-url] -------------------------------------------------------------------------------- This is a PyTorch implementation of the spline-based convolution operator of SplineCNN, as described in our paper: Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich Müller: [SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels](https://arxiv.org/abs/1711.08920) (CVPR 2018) The operator works on all floating data types and is implemented both for CPU and GPU. ## Installation Check that `nvcc` is accessible from terminal, e.g. `nvcc --version`. If not, add cuda (`/usr/local/cuda/bin`) to your `$PATH`. Then run: ``` pip install cffi torch-spline-conv ``` ## Usage ```python from torch_spline_conv import spline_conv output = spline_conv(src, edge_index, pseudo, weight, kernel_size, is_open_spline, degree=1, root_weight=None, bias=None) ``` Applies the spline-based convolutional operator

over several node features of an input graph. The kernel function *g* is defined over the weighted B-spline tensor product basis, as shown below for different B-spline degrees.

### Parameters * **src** *(Tensor or Variable)* - Input node features of shape `(number_of_nodes x in_channels)` * **edge_index** *(LongTensor)* - Graph edges, given by source and target indices, of shape `(2 x number_of_edges)` * **pseudo** *(Tensor or Variable)* - Edge attributes, ie. pseudo coordinates, of shape `(number_of_edges x number_of_edge_attributes)` in the fixed interval [0, 1] * **weight** *(Tensor or Variable)* - Trainable weight parameters of shape `(kernel_size x in_channels x out_channels)` * **kernel_size** *(LongTensor)* - Number of trainable weight parameters in each edge dimension * **is_open_spline** *(ByteTensor)* - Whether to use open or closed B-spline bases for each dimension * **degree** *(int)* - B-spline basis degree (default: `1`) * **root_weight** *(Tensor or Variable)* - Additional shared trainable parameters for each feature of the root node of shape `(in_channels x out_channels)` (default: `None`) * **bias** *(Tensor or Variable)* - Optional bias of shape (out_channels) (default: `None`) ### Example ```python import torch from torch_spline_conv import spline_conv src = torch.Tensor(4, 2) # 4 nodes with 2 features each edge_index = torch.LongTensor([[0, 1, 1, 2, 2, 3], [1, 0, 2, 1, 3, 2]]) # 6 edges pseudo = torch.Tensor(6, 2) # two-dimensional edge attributes weight = torch.Tensor(25, 2, 4) # 25 trainable parameters for each in_channels x out_channels combination kernel_size = torch.LongTensor([5, 5]) # 5 trainable parameters in each edge dimension is_open_spline = torch.ByteTensor([1, 1]) # only use open B-splines degree = 1 # B-spline degree of 1 root_weight = torch.Tensor(2, 4) # Weight root nodes separately bias = None # No additional bias output = spline_conv(src, edge_index, pseudo, weight, kernel_size, is_open_spline, degree, root_weight, bias) print(output.size()) torch.Size([4, 4]) # 4 nodes with 4 features each ``` ## Cite Please cite our paper if you use this code in your own work: ``` @inproceedings{Fey/etal/2018, title={{SplineCNN}: Fast Geometric Deep Learning with Continuous {B}-Spline Kernels}, author={Fey, Matthias and Lenssen, Jan Eric and Weichert, Frank and M{\"u}ller, Heinrich}, booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)} year={2018}, } ```