import torch from torch.autograd import Function from .._ext import ffi degrees = {1: 'linear', 2: 'quadric', 3: 'cubic'} def get_func(name, tensor): typename = type(tensor).__name__.replace('Tensor', '') cuda = 'cuda_' if tensor.is_cuda else '' func = getattr(ffi, 'spline_{}_{}{}'.format(name, cuda, typename)) return func def spline_basis(degree, pseudo, kernel_size, is_open_spline, K): degree = degrees.get(degree) if degree is None: raise NotImplementedError('Basis computation not implemented for ' 'specified B-spline degree') s = (degree + 1)**kernel_size.size(0) basis = pseudo.new(pseudo.size(0), s) weight_index = kernel_size.new(pseudo.size(0), s) func = get_func('basis_{}', degree, pseudo) func(basis, weight_index, pseudo, kernel_size, is_open_spline, K) return basis, weight_index def spline_weighting_forward(x, weight, basis, weight_index): pass def spline_weighting_backward(x, weight, basis, weight_index): pass class SplineWeighting(Function): def __init__(self, basis, weight_index): super(SplineWeighting, self).__init__() self.basis = basis self.weight_index = weight_index def forward(self, x, weight): pass def backward(self, grad_output): pass def spline_weighting(x, weight, basis, weight_index): if torch.is_tensor(x): return spline_weighting_forward(x, weight, basis, weight_index) else: return SplineWeighting(basis, weight_index)(x, weight)