from __future__ import division from unittest import TestCase import torch from torch.autograd import Variable from numpy.testing import assert_almost_equal from .spline_conv import spline_conv class SplineGcnTest(TestCase): def test_forward_cpu(self): edges = torch.LongTensor([[0, 0, 0, 0], [1, 2, 3, 4]]) values = [[0.25, 0.125], [0.25, 0.375], [0.75, 0.625], [0.75, 0.875]] values = torch.FloatTensor(values) adj = torch.sparse.FloatTensor(edges, values, torch.Size([5, 5, 2])) kernel_size = torch.LongTensor([3, 4]) is_open_spline = torch.LongTensor([1, 0]) input = torch.FloatTensor([[9, 10], [1, 2], [3, 4], [5, 6], [7, 8]]) weight = torch.arange(0.5, 0.5 * 27, step=0.5).view(13, 2, 1) input, weight = Variable(input), Variable(weight) output = spline_conv( adj, input, weight, kernel_size, is_open_spline, K=12, degree=1) expected_output = [ [(12.5 * 9 + 13 * 10 + 266) / 4], [12.5 * 1 + 13 * 2], [12.5 * 3 + 13 * 4], [12.5 * 5 + 13 * 6], [12.5 * 7 + 13 * 8], ] assert_almost_equal(output.cpu().data.numpy(), expected_output, 1) def test_forward_gpu(self): if not torch.cuda.is_available(): return edges = torch.LongTensor([[0, 0, 0, 0], [1, 2, 3, 4]]) values = [[0.25, 0.125], [0.25, 0.375], [0.75, 0.625], [0.75, 0.875]] values = torch.FloatTensor(values) adj = torch.sparse.FloatTensor(edges, values, torch.Size([5, 5, 2])) kernel_size = torch.cuda.LongTensor([3, 4]) is_open_spline = torch.cuda.LongTensor([1, 0]) input = torch.FloatTensor([[9, 10], [1, 2], [3, 4], [5, 6], [7, 8]]) weight = torch.arange(0.5, 0.5 * 27, step=0.5).view(13, 2, 1) adj, input, weight = adj.cuda(), input.cuda(), weight.cuda() input, weight = Variable(input), Variable(weight) output = spline_conv( adj, input, weight, kernel_size, is_open_spline, K=12, degree=1) expected_output = [ [(12.5 * 9 + 13 * 10 + 266) / 4], [12.5 * 1 + 13 * 2], [12.5 * 3 + 13 * 4], [12.5 * 5 + 13 * 6], [12.5 * 7 + 13 * 8], ] assert_almost_equal(output.cpu().data.numpy(), expected_output, 1) def test_backward_cpu(self): pass def test_backward_gpu(self): pass