from itertools import product import pytest import torch from torch_spline_conv import spline_basis from .utils import dtypes, devices, tensor tests = [{ 'pseudo': [[0], [0.0625], [0.25], [0.75], [0.9375], [1]], 'kernel_size': [5], 'is_open_spline': [1], 'basis': [[1, 0], [0.75, 0.25], [1, 0], [1, 0], [0.25, 0.75], [1, 0]], 'weight_index': [[0, 1], [0, 1], [1, 2], [3, 4], [3, 4], [4, 0]], }, { 'pseudo': [[0], [0.0625], [0.25], [0.75], [0.9375], [1]], 'kernel_size': [4], 'is_open_spline': [0], 'basis': [[1, 0], [0.75, 0.25], [1, 0], [1, 0], [0.25, 0.75], [1, 0]], 'weight_index': [[0, 1], [0, 1], [1, 2], [3, 0], [3, 0], [0, 1]], }, { 'pseudo': [[0.125, 0.5], [0.5, 0.5], [0.75, 0.125]], 'kernel_size': [5, 5], 'is_open_spline': [1, 1], 'basis': [[0.5, 0.5, 0, 0], [1, 0, 0, 0], [0.5, 0, 0.5, 0]], 'weight_index': [[10, 11, 15, 16], [12, 13, 17, 18], [3, 4, 8, 9]] }] @pytest.mark.parametrize('test,dtype,device', product(tests, dtypes, devices)) def test_spline_basis_forward(test, dtype, device): pseudo = tensor(test['pseudo'], dtype, device) kernel_size = tensor(test['kernel_size'], torch.long, device) is_open_spline = tensor(test['is_open_spline'], torch.uint8, device) degree = 1 basis, weight_index = spline_basis(pseudo, kernel_size, is_open_spline, degree) assert basis.tolist() == test['basis'] assert weight_index.tolist() == test['weight_index']