[pypi-image]: https://badge.fury.io/py/torch-spline-conv.svg [pypi-url]: https://pypi.python.org/pypi/torch-spline-conv [testing-image]: https://github.com/rusty1s/pytorch_spline_conv/actions/workflows/testing.yml/badge.svg [testing-url]: https://github.com/rusty1s/pytorch_spline_conv/actions/workflows/testing.yml [linting-image]: https://github.com/rusty1s/pytorch_spline_conv/actions/workflows/linting.yml/badge.svg [linting-url]: https://github.com/rusty1s/pytorch_spline_conv/actions/workflows/linting.yml [coverage-image]: https://codecov.io/gh/rusty1s/pytorch_spline_conv/branch/master/graph/badge.svg [coverage-url]: https://codecov.io/github/rusty1s/pytorch_spline_conv?branch=master # Spline-Based Convolution Operator of SplineCNN [![PyPI Version][pypi-image]][pypi-url] [![Testing Status][testing-image]][testing-url] [![Linting Status][linting-image]][linting-url] [![Code Coverage][coverage-image]][coverage-url] -------------------------------------------------------------------------------- This is a PyTorch implementation of the spline-based convolution operator of SplineCNN, as described in our paper: Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich MΓΌller: [SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels](https://arxiv.org/abs/1711.08920) (CVPR 2018) The operator works on all floating point data types and is implemented both for CPU and GPU. ## Installation ### Anaconda **Update:** You can now install `pytorch-spline-conv` via [Anaconda](https://anaconda.org/pyg/pytorch-spline-conv) for all major OS/PyTorch/CUDA combinations π€ Given that you have [`pytorch >= 1.8.0` installed](https://pytorch.org/get-started/locally/), simply run ``` conda install pytorch-spline-conv -c pyg ``` ### Binaries We alternatively provide pip wheels for all major OS/PyTorch/CUDA combinations, see [here](https://data.pyg.org/whl). #### PyTorch 2.0 To install the binaries for PyTorch 2.0.0, simply run ``` pip install torch-spline-conv -f https://data.pyg.org/whl/torch-2.0.0+${CUDA}.html ``` where `${CUDA}` should be replaced by either `cpu`, `cu117`, or `cu118` depending on your PyTorch installation. | | `cpu` | `cu117` | `cu118` | |-------------|-------|---------|---------| | **Linux** | β | β | β | | **Windows** | β | β | β | | **macOS** | β | | | #### PyTorch 1.13 To install the binaries for PyTorch 1.13.0, simply run ``` pip install torch-spline-conv -f https://data.pyg.org/whl/torch-1.13.0+${CUDA}.html ``` where `${CUDA}` should be replaced by either `cpu`, `cu116`, or `cu117` depending on your PyTorch installation. | | `cpu` | `cu116` | `cu117` | |-------------|-------|---------|---------| | **Linux** | β | β | β | | **Windows** | β | β | β | | **macOS** | β | | | **Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0, PyTorch 1.7.0/1.7.1, PyTorch 1.8.0/1.8.1, PyTorch 1.9.0, PyTorch 1.10.0/1.10.1/1.10.2, PyTorch 1.11.0 and PyTorch 1.12.0/1.12.1 (following the same procedure). For older versions, you need to explicitly specify the latest supported version number or install via `pip install --no-index` in order to prevent a manual installation from source. You can look up the latest supported version number [here](https://data.pyg.org/whl). ### From source Ensure that at least PyTorch 1.4.0 is installed and verify that `cuda/bin` and `cuda/include` are in your `$PATH` and `$CPATH` respectively, *e.g.*: ``` $ python -c "import torch; print(torch.__version__)" >>> 1.4.0 $ echo $PATH >>> /usr/local/cuda/bin:... $ echo $CPATH >>> /usr/local/cuda/include:... ``` Then run: ``` pip install torch-spline-conv ``` When running in a docker container without NVIDIA driver, PyTorch needs to evaluate the compute capabilities and may fail. In this case, ensure that the compute capabilities are set via `TORCH_CUDA_ARCH_LIST`, *e.g.*: ``` export TORCH_CUDA_ARCH_LIST = "6.0 6.1 7.2+PTX 7.5+PTX" ``` ## Usage ```python from torch_spline_conv import spline_conv out = spline_conv(x, edge_index, pseudo, weight, kernel_size, is_open_spline, degree=1, norm=True, root_weight=None, bias=None) ``` Applies the spline-based convolution operator