#
torch-spline-conv-1.2.1
## 简介 torch-spline-conv是基于PyTorch框架的一个软件包,用于实现图卷积神经网络中的Spline卷积操作。图卷积神经网络是一种能够在图结构数据上进行深度学习的模型,适用于节点分类、图分类和图生成等任务。 ## 依赖安装 + pytorch1.10或者pytorch1.13 以及对应的torchvision(建议dtk-22.04.2、dtk-23.04与dtk-23.10) + python 3.7-3.10 ### 1、使用源码编译方式安装 #### 编译环境准备 提供2种环境准备方式: 1. 基于光源pytorch基础镜像环境:镜像下载地址:[https://sourcefind.cn/#/image/dcu/pytorch](https://sourcefind.cn/#/image/dcu/pytorch),根据pytorch、python、dtk及系统下载对应的镜像版本。 2. 基于现有python环境:安装pytorch和torchvision,whl包下载目录:[https://cancon.hpccube.com:65024/4/main/pytorch](https://cancon.hpccube.com:65024/4/main/pytorch),[https://cancon.hpccube.com:65024/4/main/vision](https://cancon.hpccube.com:65024/4/main/vision),根据python、dtk版本,下载对应pytorch和torchvision的whl包。安装命令如下: ```shell pip install torch* (下载的torch的whl包) pip install torchvision* (下载的torchvision的whl包) pip install setuptools==59.5.0 wheel ``` #### 源码编译安装 - 代码下载 ```shell git clone http://developer.hpccube.com/codes/aicomponent/torch-spline-conv # 根据编译需要切换分支 ``` - 源码编译(进入torch-spline-conv目录): ``` export C_INCLUDE_PATH=/public/software/apps/DeepLearning/PyTorch_Lib/gflags-2.1.2-build/include:$C_INCLUDE_PATH export CPLUS_INCLUDE_PATH=/public/software/apps/DeepLearning/PyTorch_Lib/gflags-2.1.2-build/include:$CPLUS_INCLUDE_PATH export C_INCLUDE_PATH=/public/software/apps/DeepLearning/PyTorch_Lib/glog-build/include:$C_INCLUDE_PATH export CPLUS_INCLUDE_PATH=/public/software/apps/DeepLearning/PyTorch_Lib/glog-build/include:$CPLUS_INCLUDE_PATH export C_INCLUDE_PATH=$ROCM_PATH/rocrand/include:$C_INCLUDE_PATH export CPLUS_INCLUDE_PATH=$ROCM_PATH/rocrand/include:$CPLUS_INCLUDE_PATH export LD_LIBRARY_PATH=$ROCM_PATH/rocrand/lib:$LD_LIBRARY_PATH export FORCE_ONLY_HIP=1 export CC=hipcc export CXX=hipcc python setup.py install ``` #### 注意事项 + 若使用pip install下载安装过慢,可添加pypi清华源:-i https://pypi.tuna.tsinghua.edu.cn/simple/ + ROCM_PATH为dtk的路径,默认为/opt/dtk ## 验证 ```python import torch from torch_spline_conv import spline_conv x = torch.rand((4, 2), dtype=torch.float) # 4 nodes with 2 features each edge_index = torch.tensor([[0, 1, 1, 2, 2, 3], [1, 0, 2, 1, 3, 2]]) # 6 edges pseudo = torch.rand((6, 2), dtype=torch.float) # two-dimensional edge attributes weight = torch.rand((25, 2, 4), dtype=torch.float) # 25 parameters for in_channels x out_channels kernel_size = torch.tensor([5, 5]) # 5 parameters in each edge dimension is_open_spline = torch.tensor([1, 1], dtype=torch.uint8) # only use open B-splines degree = 1 # B-spline degree of 1 norm = True # Normalize output by node degree. root_weight = torch.rand((2, 4), dtype=torch.float) # separately weight root nodes bias = None # do not apply an additional bias out = spline_conv(x, edge_index, pseudo, weight, kernel_size, is_open_spline, degree, norm, root_weight, bias) print(out.size()) torch.Size([4, 4]) # 4 nodes with 4 features each ``` ## Known Issue - 该库没有基于cpu环境修改,仅支持dcu,请在有dcu卡的环境运行。 - 如需完整使用所有pyg功能,请pip install torch-geometric ## 参考资料 - [README_ORIGIN](README_ORIGIN.md) - [https://pypi.org/project/torch-sparse/0.6.13/](https://pypi.org/project/torch-sparse/0.6.13/)