# PyTorch Spline-Based Convolution Operator of SplineCNN
# Spline-Based Convolution Operator of SplineCNN
[![PyPI Version][pypi-image]][pypi-url]
[![PyPI Version][pypi-image]][pypi-url]
[![Build Status][build-image]][build-url]
[![Build Status][build-image]][build-url]
...
@@ -17,11 +17,11 @@ This is a PyTorch implementation of the spline-based convolution operator of Spl
...
@@ -17,11 +17,11 @@ This is a PyTorch implementation of the spline-based convolution operator of Spl
Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich Müller: [SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels](https://arxiv.org/abs/1711.08920)(CVPR 2018)
Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich Müller: [SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels](https://arxiv.org/abs/1711.08920)(CVPR 2018)
The operator works on all floating data types and is implemented both for CPU and GPU.
The operator works on all floating point data types and is implemented both for CPU and GPU.
## Installation
## Installation
Check that `nvcc` is accessible from terminal, e.g. `nvcc --version`.
If cuda is available, check that `nvcc` is accessible from your terminal, e.g. by typing `nvcc --version`.
If not, add cuda (`/usr/local/cuda/bin`) to your `$PATH`.
If not, add cuda (`/usr/local/cuda/bin`) to your `$PATH`.
Then run:
Then run:
...
@@ -97,3 +97,9 @@ Please cite our paper if you use this code in your own work:
...
@@ -97,3 +97,9 @@ Please cite our paper if you use this code in your own work: