from textwrap import indent import torch import scipy.sparse from torch_sparse.storage import SparseStorage, get_layout from torch_sparse.transpose import t from torch_sparse.narrow import narrow from torch_sparse.select import select from torch_sparse.index_select import index_select, index_select_nnz from torch_sparse.masked_select import masked_select, masked_select_nnz from torch_sparse.add import add, add_nnz class SparseTensor(object): def __init__(self, index, value=None, sparse_size=None, is_sorted=False): self.storage = SparseStorage( index, value, sparse_size, is_sorted=is_sorted) @classmethod def from_storage(self, storage): self = SparseTensor.__new__(SparseTensor) self.storage = storage return self @classmethod def from_dense(self, mat): if mat.dim() > 2: index = mat.abs().sum([i for i in range(2, mat.dim())]).nonzero() else: index = mat.nonzero() index = index.t().contiguous() value = mat[index[0], index[1]] return SparseTensor(index, value, mat.size()[:2], is_sorted=True) @classmethod def from_torch_sparse_coo_tensor(self, mat, is_sorted=False): return SparseTensor( mat._indices(), mat._values(), mat.size()[:2], is_sorted=is_sorted) @classmethod def from_scipy(self, mat): colptr = None if isinstance(mat, scipy.sparse.csc_matrix): colptr = torch.from_numpy(mat.indptr).to(torch.long) mat = mat.tocsr() rowptr = torch.from_numpy(mat.indptr).to(torch.long) mat = mat.tocoo() row = torch.from_numpy(mat.row).to(torch.long) col = torch.from_numpy(mat.col).to(torch.long) index = torch.stack([row, col], dim=0) value = torch.from_numpy(mat.data) size = mat.shape storage = SparseStorage( index, value, size, rowptr=rowptr, colptr=colptr, is_sorted=True) return SparseTensor.from_storage(storage) def __copy__(self): return self.from_storage(self.storage) def clone(self): return self.from_storage(self.storage.clone()) def __deepcopy__(self, memo): new_sparse_tensor = self.clone() memo[id(self)] = new_sparse_tensor return new_sparse_tensor # Formats ################################################################# def coo(self): return self.storage.index, self.storage.value def csr(self): return self.storage.rowptr, self.storage.col, self.storage.value def csc(self): perm = self.storage.csr2csc return (self.storage.colptr, self.storage.row[perm], self.storage.value[perm] if self.has_value() else None) # Storage inheritance ##################################################### def has_value(self): return self.storage.has_value() def set_value_(self, value, layout=None): self.storage.set_value_(value, layout) return self def set_value(self, value, layout=None): return self.from_storage(self.storage.set_value(value, layout)) def sparse_size(self, dim=None): return self.storage.sparse_size(dim) def sparse_resize_(self, *sizes): self.storage.sparse_resize_(*sizes) return self def is_coalesced(self): return self.storage.is_coalesced() def coalesce(self, reduce='add'): return self.from_storage(self.storage.coalesce(reduce)) def cached_keys(self): return self.storage.cached_keys() def fill_cache_(self, *args): self.storage.fill_cache_(*args) return self def clear_cache_(self, *args): self.storage.clear_cache_(*args) return self # Utility functions ####################################################### def size(self, dim=None): size = self.sparse_size() size += self.storage.value.size()[1:] if self.has_value() else () return size if dim is None else size[dim] def dim(self): return len(self.size()) @property def shape(self): return self.size() def nnz(self): return self.storage.index.size(1) def density(self): return self.nnz() / (self.sparse_size(0) * self.sparse_size(1)) def sparsity(self): return 1 - self.density() def avg_row_length(self): return self.nnz() / self.sparse_size(0) def avg_col_length(self): return self.nnz() / self.sparse_size(1) def numel(self): return self.value.numel() if self.has_value() else self.nnz() def is_quadratic(self): return self.sparse_size(0) == self.sparse_size(1) def is_symmetric(self): if not self.is_quadratic: return False rowptr, col, val1 = self.csr() colptr, row, val2 = self.csc() index_sym = (rowptr == colptr).all() and (col == row).all() value_sym = (val1 == val2).all().item() if self.has_value() else True return index_sym.item() and value_sym def detach_(self): self.storage.apply_(lambda x: x.detach_()) return self def detach(self): return self.from_storage(self.storage.apply(lambda x: x.detach())) def pin_memory(self): return self.from_storage(self.storage.apply(lambda x: x.pin_memory())) def is_pinned(self): return all(self.storage.map(lambda x: x.is_pinned())) def share_memory_(self): self.storage.apply_(lambda x: x.share_memory_()) return self def is_shared(self): return all(self.storage.map(lambda x: x.is_shared())) @property def device(self): return self.storage.index.device def cpu(self): return self.from_storage(self.storage.apply(lambda x: x.cpu())) def cuda(self, device=None, non_blocking=False, **kwargs): storage = self.storage.apply(lambda x: x.cuda(device, non_blocking, ** kwargs)) return self.from_storage(storage) @property def is_cuda(self): return self.storage.index.is_cuda @property def dtype(self): return self.storage.value.dtype if self.has_value() else None def is_floating_point(self): value = self.storage.value return self.has_value() and torch.is_floating_point(value) def type(self, dtype=None, non_blocking=False, **kwargs): if dtype is None: return self.dtype if dtype == self.dtype: return self storage = self.storage.apply_value(lambda x: x.type( dtype, non_blocking, **kwargs)) return self.from_storage(storage) def to(self, *args, **kwargs): storage = None if 'device' in kwargs: device = kwargs['device'] del kwargs['device'] storage = self.storage.apply(lambda x: x.to( device, non_blocking=getattr(kwargs, 'non_blocking', False))) for arg in args[:]: if isinstance(arg, str) or isinstance(arg, torch.device): storage = self.storage.apply(lambda x: x.to( arg, non_blocking=getattr(kwargs, 'non_blocking', False))) args.remove(arg) if storage is not None: self = self.from_storage(storage) if len(args) > 0 or len(kwargs) > 0: self = self.type(*args, **kwargs) return self def bfloat16(self): return self.type(torch.bfloat16) def bool(self): return self.type(torch.bool) def byte(self): return self.type(torch.byte) def char(self): return self.type(torch.char) def half(self): return self.type(torch.half) def float(self): return self.type(torch.float) def double(self): return self.type(torch.double) def short(self): return self.type(torch.short) def int(self): return self.type(torch.int) def long(self): return self.type(torch.long) # Conversions ############################################################# def to_dense(self, dtype=None): dtype = dtype or self.dtype (row, col), value = self.coo() mat = torch.zeros(self.size(), dtype=dtype, device=self.device) mat[row, col] = value if self.has_value() else 1 return mat def to_torch_sparse_coo_tensor(self, dtype=None, requires_grad=False): index, value = self.coo() return torch.sparse_coo_tensor( index, value if self.has_value() else torch.ones( self.nnz(), dtype=dtype, device=self.device), self.size(), device=self.device, requires_grad=requires_grad) def to_scipy(self, dtype=None, layout=None): assert self.dim() == 2 layout = get_layout(layout) if not self.has_value(): ones = torch.ones(self.nnz(), dtype=dtype).numpy() if layout == 'coo': (row, col), value = self.coo() row = row.detach().cpu().numpy() col = col.detach().cpu().numpy() value = value.detach().cpu().numpy() if self.has_value() else ones return scipy.sparse.coo_matrix((value, (row, col)), self.size()) elif layout == 'csr': rowptr, col, value = self.csr() rowptr = rowptr.detach().cpu().numpy() col = col.detach().cpu().numpy() value = value.detach().cpu().numpy() if self.has_value() else ones return scipy.sparse.csr_matrix((value, col, rowptr), self.size()) elif layout == 'csc': colptr, row, value = self.csc() colptr = colptr.detach().cpu().numpy() row = row.detach().cpu().numpy() value = value.detach().cpu().numpy() if self.has_value() else ones return scipy.sparse.csc_matrix((value, row, colptr), self.size()) # Standard Operators ###################################################### def __getitem__(self, index): index = list(index) if isinstance(index, tuple) else [index] # More than one `Ellipsis` is not allowed... if len([i for i in index if not torch.is_tensor(i) and i == ...]) > 1: raise SyntaxError() dim = 0 out = self while len(index) > 0: item = index.pop(0) if isinstance(item, int): out = out.select(dim, item) dim += 1 elif isinstance(item, slice): if item.step is not None: raise ValueError('Step parameter not yet supported.') start = 0 if item.start is None else item.start start = self.size(dim) + start if start < 0 else start stop = self.size(dim) if item.stop is None else item.stop stop = self.size(dim) + stop if stop < 0 else stop out = out.narrow(dim, start, max(stop - start, 0)) dim += 1 elif torch.is_tensor(item): if item.dtype == torch.bool: out = out.masked_select(dim, item) dim += 1 elif item.dtype == torch.long: out = out.index_select(dim, item) dim += 1 elif item == Ellipsis: if self.dim() - len(index) < dim: raise SyntaxError() dim = self.dim() - len(index) else: raise SyntaxError() return out # String Reputation ####################################################### def __repr__(self): i = ' ' * 6 index, value = self.coo() infos = [f'index={indent(index.__repr__(), i)[len(i):]}'] if self.has_value(): infos += [f'value={indent(value.__repr__(), i)[len(i):]}'] infos += [ f'size={tuple(self.size())}, ' f'nnz={self.nnz()}, ' f'density={100 * self.density():.02f}%' ] infos = ',\n'.join(infos) i = ' ' * (len(self.__class__.__name__) + 1) return f'{self.__class__.__name__}({indent(infos, i)[len(i):]})' # Bindings #################################################################### SparseTensor.t = t SparseTensor.narrow = narrow SparseTensor.select = select SparseTensor.index_select = index_select SparseTensor.index_select_nnz = index_select_nnz SparseTensor.masked_select = masked_select SparseTensor.masked_select_nnz = masked_select_nnz SparseTensor.add = add SparseTensor.add_nnz = add_nnz # def remove_diag(self): # raise NotImplementedError # def set_diag(self, value): # raise NotImplementedError # def __reduce(self, dim, reduce, only_nnz): # raise NotImplementedError # def sum(self, dim): # return self.__reduce(dim, reduce='add', only_nnz=True) # def prod(self, dim): # return self.__reduce(dim, reduce='mul', only_nnz=True) # def min(self, dim, only_nnz=False): # return self.__reduce(dim, reduce='min', only_nnz=only_nnz) # def max(self, dim, only_nnz=False): # return self.__reduce(dim, reduce='min', only_nnz=only_nnz) # def mean(self, dim, only_nnz=False): # return self.__reduce(dim, reduce='mean', only_nnz=only_nnz) # def matmul(self, mat, reduce='add'): # assert self.numel() == self.nnz() # Disallow multi-dimensional value # if torch.is_tensor(mat): # raise NotImplementedError # elif isinstance(mat, self.__class__): # assert reduce == 'add' # assert mat.numel() == mat.nnz() # Disallow multi-dimensional value # raise NotImplementedError # raise ValueError('Argument needs to be of type `torch.tensor` or ' # 'type `torch_sparse.SparseTensor`.') # def __add__(self, other): # return self.add(other) # def __radd__(self, other): # return self.add(other) # def sub(self, layout=None): # raise NotImplementedError # def sub_(self, layout=None): # raise NotImplementedError # def mul(self, layout=None): # raise NotImplementedError # def mul_(self, layout=None): # raise NotImplementedError # def div(self, layout=None): # raise NotImplementedError # def div_(self, layout=None): # raise NotImplementedError if __name__ == '__main__': from torch_geometric.datasets import Reddit, Planetoid # noqa import time # noqa device = 'cuda' if torch.cuda.is_available() else 'cpu' # device = 'cpu' # dataset = Reddit('/tmp/Reddit') dataset = Planetoid('/tmp/PubMed', 'PubMed') data = dataset[0].to(device) # value = torch.randn(data.num_edges, 10) mat = SparseTensor(data.edge_index) perm = torch.arange(data.num_nodes) perm = torch.randperm(data.num_nodes) mat1 = SparseTensor(torch.tensor([[0, 1], [0, 1]])) mat2 = SparseTensor(torch.tensor([[0, 0, 1], [0, 1, 0]])) add(mat1, mat2) # print(mat2) raise NotImplementedError for _ in range(10): x = torch.randn(1000, 1000, device=device).sum() torch.cuda.synchronize() t = time.perf_counter() for _ in range(100): mat[perm] torch.cuda.synchronize() print(time.perf_counter() - t) # index = torch.tensor([ # [0, 1, 1, 2, 2], # [1, 2, 2, 2, 3], # ]) # value = torch.tensor([1, 2, 3, 4, 5]) # mat = SparseTensor(index, value) # print(mat) # print(mat.coalesce()) # index = torch.tensor([0, 1, 2]) # mask = torch.zeros(data.num_nodes, dtype=torch.bool) # mask[:3] = True # print(mat[1].size()) # print(mat[1, 1].size()) # print(mat[..., -1].size()) # print(mat[:10, ..., -1].size()) # print(mat[:, -1].size()) # print(mat[1, :, -1].size()) # print(mat[1:4, 1:4].size()) # print(mat[index].size()) # print(mat[index, index].size()) # print(mat[mask, index].size()) # mat[::-1] # mat[::2] # mat1 = SparseTensor.from_dense(mat1.to_dense()) # print(mat1) # mat = SparseTensor.from_torch_sparse_coo_tensor( # mat1.to_torch_sparse_coo_tensor()) # mat = SparseTensor.from_scipy(mat.to_scipy(layout='csc')) # print(mat) # index = torch.tensor([0, 2]) # mat2 = mat1.index_select(2, index) # index = torch.randperm(data.num_nodes)[:data.num_nodes - 500] # mask = torch.zeros(data.num_nodes, dtype=torch.bool) # mask[index] = True # t = time.perf_counter() # for _ in range(1000): # mat2 = mat1.index_select(0, index) # print(time.perf_counter() - t) # t = time.perf_counter() # for _ in range(1000): # mat2 = mat1.masked_select(0, mask) # print(time.perf_counter() - t) # mat2 = mat1.narrow(1, start=0, length=3) # print(mat2) # index = torch.randperm(data.num_nodes) # t = time.perf_counter() # for _ in range(1000): # mat2 = mat1.index_select(0, index) # print(time.perf_counter() - t) # t = time.perf_counter() # for _ in range(1000): # mat2 = mat1.index_select(1, index) # print(time.perf_counter() - t) # raise NotImplementedError # t = time.perf_counter() # for _ in range(1000): # mat2 = mat1.t().index_select(0, index).t() # print(time.perf_counter() - t) # print(mat1) # mat1.index_select((0, 1), torch.tensor([0, 1, 2, 3, 4])) # print(mat3) # print(mat3.storage.rowcount) # print(mat1) # (row, col), value = mat1.coo() # mask = row < 3 # t = time.perf_counter() # for _ in range(10000): # mat2 = mat1.narrow(1, start=10, length=2690) # print(time.perf_counter() - t) # # print(mat1.to_dense().size()) # print(mat1.to_torch_sparse_coo_tensor().to_dense().size()) # print(mat1.to_scipy(layout='coo').todense().shape) # print(mat1.to_scipy(layout='csr').todense().shape) # print(mat1.to_scipy(layout='csc').todense().shape) # print(mat1.is_quadratic()) # print(mat1.is_symmetric()) # print(mat1.cached_keys()) # mat1 = mat1.t() # print(mat1.cached_keys()) # mat1 = mat1.t() # print(mat1.cached_keys()) # print('-------- NARROW ----------') # t = time.perf_counter() # for _ in range(100): # out = mat1.narrow(dim=0, start=10, length=10) # # out.storage.colptr # print(time.perf_counter() - t) # print(out) # print(out.cached_keys()) # t = time.perf_counter() # for _ in range(100): # out = mat1.narrow(dim=1, start=10, length=2000) # # out.storage.colptr # print(time.perf_counter() - t) # print(out) # print(out.cached_keys()) # mat1 = mat1.narrow(0, start=10, length=10) # mat1.storage._value = torch.randn(mat1.nnz(), 20) # print(mat1.coo()[1].size()) # mat1 = mat1.narrow(2, start=10, length=10) # print(mat1.coo()[1].size()) # mat1 = mat1.t() # mat2 = torch.sparse_coo_tensor(data.edge_index, torch.ones(data.num_edges), # device=device) # mat2 = mat2.coalesce() # mat2 = mat2.t().coalesce() # index1, value1 = mat1.coo() # index2, value2 = mat2._indices(), mat2._values() # assert torch.allclose(index1, index2) # out1 = mat1.to_dense() # out2 = mat2.to_dense() # assert torch.allclose(out1, out2) # out = 2 + mat1 # print(out) # # mat1[1] # # mat1[1, 1] # # mat1[..., -1] # # mat1[:, -1] # # mat1[1:4, 1:4] # # mat1[torch.tensor([0, 1, 2])]