import torch from torch_sparse import SparseTensor def test_ego_k_hop_sample_adj(): rowptr = torch.tensor([0, 3, 5, 9, 10, 12, 14]) row = torch.tensor([0, 0, 0, 1, 1, 2, 2, 2, 2, 3, 4, 4, 5, 5]) col = torch.tensor([1, 2, 3, 0, 2, 0, 1, 4, 5, 0, 2, 5, 2, 4]) _ = SparseTensor(row=row, col=col, sparse_sizes=(6, 6)) nid = torch.tensor([0, 1]) fn = torch.ops.torch_sparse.ego_k_hop_sample_adj out = fn(rowptr, col, nid, 1, 3, False) rowptr, col, nid, eid, ptr, root_n_id = out assert nid.tolist() == [0, 1, 2, 3, 0, 1, 2] assert rowptr.tolist() == [0, 3, 5, 7, 8, 10, 12, 14] # row [0, 0, 0, 1, 1, 2, 2, 3, 4, 4, 5, 5, 6, 6] assert col.tolist() == [1, 2, 3, 0, 2, 0, 1, 0, 5, 6, 4, 6, 4, 5] assert eid.tolist() == [0, 1, 2, 3, 4, 5, 6, 9, 0, 1, 3, 4, 5, 6] assert ptr.tolist() == [0, 4, 7] assert root_n_id.tolist() == [0, 5]