from itertools import product import pytest import torch from torch_sparse.tensor import SparseTensor from .utils import dtypes, devices, tensor @pytest.mark.parametrize('dtype,device', product(dtypes, devices)) def test_remove_diag(dtype, device): row, col = tensor([[0, 0, 1, 2], [0, 1, 2, 2]], torch.long, device) value = tensor([1, 2, 3, 4], dtype, device) mat = SparseTensor(row=row, col=col, value=value) mat.fill_cache_() mat = mat.remove_diag() assert mat.storage.row.tolist() == [0, 1] assert mat.storage.col.tolist() == [1, 2] assert mat.storage.value.tolist() == [2, 3] assert len(mat.cached_keys()) == 2 assert mat.storage.rowcount.tolist() == [1, 1, 0] assert mat.storage.colcount.tolist() == [0, 1, 1] mat = SparseTensor(row=row, col=col, value=value) mat.fill_cache_() mat = mat.remove_diag(k=1) assert mat.storage.row.tolist() == [0, 2] assert mat.storage.col.tolist() == [0, 2] assert mat.storage.value.tolist() == [1, 4] assert len(mat.cached_keys()) == 2 assert mat.storage.rowcount.tolist() == [1, 0, 1] assert mat.storage.colcount.tolist() == [1, 0, 1] @pytest.mark.parametrize('dtype,device', product(dtypes, devices)) def test_set_diag(dtype, device): row, col = tensor([[0, 0, 9, 9], [0, 1, 0, 1]], torch.long, device) value = tensor([1, 2, 3, 4], dtype, device) mat = SparseTensor(row=row, col=col, value=value) k = -8 mat = mat.set_diag(k)