import numpy as np import scipy.sparse import torch from torch import from_numpy def to_torch_sparse(index, value, m, n): return torch.sparse_coo_tensor(index.detach(), value, (m, n)) def from_torch_sparse(A): return A.indices().detach(), A.values() def to_scipy(index, value, m, n): assert not index.is_cuda and not value.is_cuda (row, col), data = index.detach(), value.detach() return scipy.sparse.coo_matrix((data, (row, col)), (m, n)) def from_scipy(A): A = A.tocoo() row, col, value = A.row.astype(np.int64), A.col.astype(np.int64), A.data row, col, value = from_numpy(row), from_numpy(col), from_numpy(value) index = torch.stack([row, col], dim=0) return index, value