from itertools import product import pytest import torch from torch_sparse.tensor import SparseTensor from torch_sparse import view from .utils import dtypes, devices, tensor @pytest.mark.parametrize('dtype,device', product(dtypes, devices)) def test_view_matrix(dtype, device): row = torch.tensor([0, 1, 1], device=device) col = torch.tensor([1, 0, 2], device=device) index = torch.stack([row, col], dim=0) value = tensor([1, 2, 3], dtype, device) index, value = view(index, value, m=2, n=3, new_n=2) assert index.tolist() == [[0, 1, 2], [1, 1, 1]] assert value.tolist() == [1, 2, 3] @pytest.mark.parametrize('dtype,device', product(dtypes, devices)) def test_view_sparse_tensor(dtype, device): options = torch.tensor(0, dtype=dtype, device=device) mat = SparseTensor.eye(4, options=options).view(2, 8) assert mat.storage.sparse_sizes() == (2, 8) assert mat.storage.row().tolist() == [0, 0, 1, 1] assert mat.storage.col().tolist() == [0, 5, 2, 7] assert mat.storage.value().tolist() == [1, 1, 1, 1]