import time from itertools import product from scipy.io import loadmat import numpy as np import pytest import torch from torch_sparse.tensor import SparseTensor from torch_sparse.add import sparse_add from .utils import dtypes, devices, tensor devices = ['cpu'] dtypes = [torch.float] @pytest.mark.parametrize('dtype,device', product(dtypes, devices)) def test_index_select(dtype, device): row = torch.tensor([0, 0, 1, 1, 2]) col = torch.tensor([0, 1, 1, 2, 1]) mat = SparseTensor(row=row, col=col) print() print(mat.to_dense()) pass mat = mat.index_select(0, torch.tensor([0, 2])) print(mat.to_dense())