import torch from torch_sparse import SparseTensor, sample, sample_adj def test_sample(): row = torch.tensor([0, 0, 2, 2]) col = torch.tensor([1, 2, 0, 1]) adj = SparseTensor(row=row, col=col, sparse_sizes=(3, 3)) out = sample(adj, num_neighbors=1) assert out.min() >= 0 and out.max() <= 2 def test_sample_adj(): row = torch.tensor([0, 0, 0, 1, 1, 2, 2, 2, 2, 3, 4, 4, 5, 5]) col = torch.tensor([1, 2, 3, 0, 2, 0, 1, 4, 5, 0, 2, 5, 2, 4]) value = torch.arange(row.size(0)) adj_t = SparseTensor(row=row, col=col, value=value, sparse_sizes=(6, 6)) out, n_id = sample_adj(adj_t, torch.arange(2, 6), num_neighbors=-1) assert n_id.tolist() == [2, 3, 4, 5, 0, 1] row, col, val = out.coo() assert row.tolist() == [0, 0, 0, 0, 1, 2, 2, 3, 3] assert col.tolist() == [2, 3, 4, 5, 4, 0, 3, 0, 2] assert val.tolist() == [7, 8, 5, 6, 9, 10, 11, 12, 13] out, n_id = sample_adj(adj_t, torch.arange(2, 6), num_neighbors=2, replace=True) assert out.nnz() == 8 out, n_id = sample_adj(adj_t, torch.arange(2, 6), num_neighbors=2, replace=False) assert out.nnz() == 7 # node 3 has only one edge...