import torch from torch_sparse.storage import SparseStorage from torch_sparse.tensor import SparseTensor @torch.jit.script def narrow(src: SparseTensor, dim: int, start: int, length: int) -> SparseTensor: dim = src.dim() + dim if dim < 0 else dim start = src.size(dim) + start if start < 0 else start if dim == 0: rowptr, col, value = src.csr() rowptr = rowptr.narrow(0, start=start, length=length + 1) row_start = rowptr[0] rowptr = rowptr - row_start row_length = rowptr[-1] row = src.storage._row if row is not None: row = row.narrow(0, row_start, row_length) - start col = col.narrow(0, row_start, row_length) if value is not None: value = value.narrow(0, row_start, row_length) sparse_sizes = torch.Size([length, src.sparse_size(1)]) rowcount = src.storage._rowcount if rowcount is not None: rowcount = rowcount.narrow(0, start=start, length=length) storage = SparseStorage(row=row, rowptr=rowptr, col=col, value=value, sparse_sizes=sparse_sizes, rowcount=rowcount, colptr=None, colcount=None, csr2csc=None, csc2csr=None, is_sorted=True) return src.from_storage(storage) elif dim == 1: # This is faster than accessing `csc()` contrary to the `dim=0` case. row, col, value = src.coo() mask = (col >= start) & (col < start + length) row = row[mask] col = col[mask] - start if value is not None: value = value[mask] sparse_sizes = torch.Size([src.sparse_size(0), length]) colptr = src.storage._colptr if colptr is not None: colptr = colptr.narrow(0, start=start, length=length + 1) colptr = colptr - colptr[0] colcount = src.storage._colcount if colcount is not None: colcount = colcount.narrow(0, start=start, length=length) storage = SparseStorage(row=row, rowptr=None, col=col, value=value, sparse_sizes=sparse_sizes, rowcount=None, colptr=colptr, colcount=colcount, csr2csc=None, csc2csr=None, is_sorted=True) return src.from_storage(storage) else: value = src.storage.value() if value is not None: return src.set_value(value.narrow(dim - 1, start, length), layout='coo') else: raise ValueError SparseTensor.narrow = lambda self, dim, start, length: narrow( self, dim, start, length)