Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
torch-sparse
Commits
d12a1a9c
Commit
d12a1a9c
authored
Dec 22, 2023
by
quyuanhao123
Browse files
Update README.md
parent
c6470859
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
76 additions
and
63 deletions
+76
-63
README.md
README.md
+76
-63
No files found.
README.md
View file @
d12a1a9c
# <div align="center"><strong>torch-sparse-0.6.13</strong></div>
**编译安装步骤**
## 简介
torch-sparse是PyTorch的一个扩展库,用于处理稀疏数据。它提供了一些功能强大的稀疏矩阵操作,以及能够高效执行稀疏计算的函数和工具。
-
1. 安装与dtk版本对应的pytorch torchvision whl(可在光合社区下载https://developer.hpccube.com/tool/)以及其他依赖库
## 依赖安装
+
pytorch1.10或者pytorch1.13 (建议dtk-22.04.2、dtk-23.04与dtk-23.10)
+
python 3.7-3.10
例如:
### 1、使用源码编译方式安装
pip install https://cancon.hpccube.com:65024/directlink/4/pytorch/dtk22.10/torch-1.10.0a0+git2040069.dtk2210-cp38-cp38-manylinux2014_x86_64.whl
#### 编译环境准备
pip install https://cancon.hpccube.com:65024/directlink/4/vision/dtk22.10/torchvision-0.10.0a0+e04d001.dtk2210-cp38-cp38-manylinux2014_x86_64.whl
提供2种环境准备方式:
pip install -r requirements.txt
1.
基于光源pytorch基础镜像环境:镜像下载地址:
[
https://sourcefind.cn/#/image/dcu/pytorch
](
https://sourcefind.cn/#/image/dcu/pytorch
)
,根据pytorch、python、dtk及系统下载对应的镜像版本。
-
2. 添加编译时的conda环境及部分库的环境变量
2.
基于现有python环境:安装pytorch,pytorch whl包下载目录:
[
https://cancon.hpccube.com:65024/4/main/pytorch
](
https://cancon.hpccube.com:65024/4/main/pytorch/dtk23.04
)
,根据python、dtk版本,下载对应pytorch的whl包。安装命令如下:
```
shell
-
2.1 激活对应的conda环境:
pip
install
torch
*
(
下载的torch的whl包
)
pip
install
setuptools
==
59.5.0 wheel
```
source ~/miniconda3/etc/profile.d/conda.sh
#### 源码编译安装
conda activate torch1.10_py39_dtk22.10
-
代码下载
```
shell
- 2.2 加载对应的module,包括dtk:
git clone http://developer.hpccube.com/codes/aicomponent/torch-sparce
# 根据编译需要切换分支
```
-
源码编译(进入torch-sparse目录):
module purge
```
export C_INCLUDE_PATH=/public/software/apps/DeepLearning/PyTorch_Lib/gflags-2.1.2-build/include:$C_INCLUDE_PATH
module load compiler/devtoolset/7.3.1 mpi/hpcx/gcc-7.3.1 compiler/dtk/22.10.1
export CPLUS_INCLUDE_PATH=/public/software/apps/DeepLearning/PyTorch_Lib/gflags-2.1.2-build/include:$CPLUS_INCLUDE_PATH
export C_INCLUDE_PATH=/public/software/apps/DeepLearning/PyTorch_Lib/glog-build/include:$C_INCLUDE_PATH
module list
export CPLUS_INCLUDE_PATH=/public/software/apps/DeepLearning/PyTorch_Lib/glog-build/include:$CPLUS_INCLUDE_PATH
export C_INCLUDE_PATH=$ROCM_PATH/rocrand/include:$C_INCLUDE_PATH
- 2.3 加载所需的依赖库的环境变量(根据各集群实际路径调整):
export CPLUS_INCLUDE_PATH=$ROCM_PATH/rocrand/include:$CPLUS_INCLUDE_PATH
export LD_LIBRARY_PATH=$ROCM_PATH/rocrand/lib:$LD_LIBRARY_PATH
export FORCE_ONLY_HIP=1
export C_INCLUDE_PATH=/public/software/apps/DeepLearning/PyTorch_Lib/gflags-2.1.2-build/include:$C_INCLUDE_PATH
export CC=hipcc
export CXX=hipcc
export CPLUS_INCLUDE_PATH=/public/software/apps/DeepLearning/PyTorch_Lib/gflags-2.1.2-build/include:$CPLUS_INCLUDE_PATH
python setup.py install
export C_INCLUDE_PATH=/public/software/apps/DeepLearning/PyTorch_Lib/glog-build/include:$C_INCLUDE_PATH
```
#### 注意事项
export CPLUS_INCLUDE_PATH=/public/software/apps/DeepLearning/PyTorch_Lib/glog-build/include:$CPLUS_INCLUDE_PATH
+
若使用pip install下载安装过慢,可添加pypi清华源:-i https://pypi.tuna.tsinghua.edu.cn/simple/
+
ROCM_PATH为dtk的路径,默认为/opt/dtk
export C_INCLUDE_PATH=$ROCM_PATH/rocrand/include:$C_INCLUDE_PATH
## 验证
export CPLUS_INCLUDE_PATH=$ROCM_PATH/rocrand/include:$CPLUS_INCLUDE_PATH
```
python
export LD_LIBRARY_PATH=$ROCM_PATH/rocrand/lib:$LD_LIBRARY_PATH
import
torch
from
torch_sparse
import
coalesce
- 2.4 修改编译器环境变量:
index
=
torch
.
tensor
([[
1
,
0
,
1
,
0
,
2
,
1
],
[
0
,
1
,
1
,
1
,
0
,
0
]])
export FORCE_ONLY_HIP=1
value
=
torch
.
Tensor
([[
1
,
2
],
[
2
,
3
],
[
3
,
4
],
[
4
,
5
],
[
5
,
6
],
[
6
,
7
]])
export CC=hipcc
index
,
value
=
coalesce
(
index
,
value
,
m
=
3
,
n
=
2
)
```
export CXX=hipcc
```
-
3. 编译安装
print(index)
tensor([[0, 1, 1, 2],
[1, 0, 1, 0]])
python setup.py install
print(value)
tensor([[6.0, 8.0],
[7.0, 9.0],
[3.0, 4.0],
[5.0, 6.0]])
```
## Known Issue
-
该库没有基于cpu环境修改,仅支持dcu,请在有dcu卡的环境运行。
-
如需完整使用所有pyg功能,请pip install torch-geometric
## 参考资料
-
[
README_ORIGIN
](
README_ORIGIN.md
)
-
[
https://pypi.org/project/torch-sparse/0.6.13/
](
https://pypi.org/project/torch-sparse/0.6.13/
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment