"src/include/amd_inline_asm.hip.hpp" did not exist on "605afd0fb6158aba58dd8146501461b0a50487a9"
Commit 2951b12d authored by aiss's avatar aiss
Browse files

push v0.6.18 version

parent e8309f27
#define THIS_HASH_SET parallel_flat_hash_set
#define THIS_TEST_NAME ParallelFlatHashSet
#include "parallel_hash_set_test.cc"
#ifndef THIS_HASH_MAP
#define THIS_HASH_MAP parallel_flat_hash_map
#define THIS_TEST_NAME ParallelFlatHashMap
#endif
#include "flat_hash_map_test.cc"
namespace phmap {
namespace priv {
namespace {
TEST(THIS_TEST_NAME, IfContains) {
// ----------------
// test if_contains
// ----------------
using Map = ThisMap<int, int>;
Map m = { {1, 7}, {2, 9} };
const Map& const_m(m);
auto val = 0;
auto get_value = [&val](const Map::value_type& v) { val = v.second; };
EXPECT_TRUE(const_m.if_contains(2, get_value));
EXPECT_EQ(val, 9);
EXPECT_FALSE(m.if_contains(3, get_value));
}
TEST(THIS_TEST_NAME, ModifyIf) {
// --------------
// test modify_if
// --------------
using Map = ThisMap<int, int>;
Map m = { {1, 7}, {2, 9} };
auto set_value = [](Map::value_type& v) { v.second = 11; };
EXPECT_TRUE(m.modify_if(2, set_value));
EXPECT_EQ(m[2], 11);
EXPECT_FALSE(m.modify_if(3, set_value)); // because m[3] does not exist
}
TEST(THIS_TEST_NAME, TryEmplaceL) {
// ------------------
// test try_emplace_l
// ------------------
using Map = ThisMap<int, int>;
Map m = { {1, 7}, {2, 9} };
// overwrite an existing value
m.try_emplace_l(2, [](Map::value_type& v) { v.second = 5; });
EXPECT_EQ(m[2], 5);
// insert a value that is not already present. Will be default initialised to 0 and lambda not called
m.try_emplace_l(3,
[](Map::value_type& v) { v.second = 6; }, // called only when key was already present
1); // argument to construct new value is key not present
EXPECT_EQ(m[3], 1);
// insert a value that is not already present, provide argument to value-construct it
m.try_emplace_l(4,
[](Map::value_type& ) {}, // called only when key was already present
999); // argument to construct new value is key not present
EXPECT_EQ(m[4], 999);
}
TEST(THIS_TEST_NAME, LazyEmplaceL) {
// --------------------
// test lazy_emplace_l
// --------------------
using Map = ThisMap<int, int>;
Map m = { {1, 7}, {2, 9} };
// insert a value that is not already present.
// right now m[5] does not exist
m.lazy_emplace_l(5,
[](Map::value_type& v) { v.second = 6; }, // called only when key was already present
[](const Map::constructor& ctor) { ctor(5, 13); }); // construct value_type in place when key not present
EXPECT_EQ(m[5], 13);
// change a value that is present. Currently m[5] == 13
m.lazy_emplace_l(5,
[](Map::value_type& v) { v.second = 6; }, // called only when key was already present
[](const Map::constructor& ctor) { ctor(5, 13); }); // construct value_type in place when key not present
EXPECT_EQ(m[5], 6);
}
TEST(THIS_TEST_NAME, EraseIf) {
// -------------
// test erase_if
// -------------
using Map = ThisMap<int, int>;
Map m = { {1, 7}, {2, 9}, {5, 6} };
EXPECT_EQ(m.erase_if(9, [](Map::value_type& v) { assert(0); return v.second == 12; }), false); // m[9] not present - lambda not called
EXPECT_EQ(m.erase_if(5, [](Map::value_type& v) { return v.second == 12; }), false); // m[5] == 6, so erase not performed
EXPECT_EQ(m[5], 6);
EXPECT_EQ(m.erase_if(5, [](Map::value_type& v) { return v.second == 6; }), true); // lambda returns true, so m[5] erased
EXPECT_EQ(m[5], 0);
}
TEST(THIS_TEST_NAME, ForEach) {
// -------------
// test for_each
// -------------
using Map = ThisMap<int, int>;
Map m = { {1, 7}, {2, 8}, {5, 11} };
// increment all values by 1
m.for_each_m([](Map::value_type &pair) { ++pair.second; });
int counter = 0;
m.for_each([&counter](const Map::value_type &pair) {
++counter;
EXPECT_EQ(pair.first + 7, pair.second);
});
EXPECT_EQ(counter, 3);
}
TEST(THIS_TEST_NAME, EmplaceSingle) {
// --------------------
// test emplace_single
// --------------------
using Map = ThisMap<int, int>;
Map m = { {1, 4}, {11, 4} };
// emplace_single insert a value if not already present, else removes it
for (int i=0; i<12; ++i)
m.emplace_single(i, [i](const Map::constructor& ctor) { ctor(i, 4); });
EXPECT_EQ(m.count(0), 1);
EXPECT_EQ(m.count(1), 0);
EXPECT_EQ(m.count(2), 1);
EXPECT_EQ(m.count(11), 0);
}
} // namespace
} // namespace priv
} // namespace phmap
#ifndef THIS_HASH_SET
#define THIS_HASH_SET parallel_flat_hash_set
#define THIS_TEST_NAME ParallelFlatHashSet
#endif
#include "flat_hash_set_test.cc"
namespace phmap {
namespace priv {
namespace {
struct Entry
{
Entry(int k, int v=0) : key(k), value(v) {}
bool operator==(const Entry &o) const
{
return key == o.key; // not checking value
}
// Demonstrates how to provide the hash function as a friend member function of the class
// This can be used as an alternative to providing a std::hash<Person> specialization
// --------------------------------------------------------------------------------------
friend size_t hash_value(const Entry &p)
{
return phmap::HashState().combine(0, p.key); // not checking value
}
int key;
int value;
};
TEST(THIS_TEST_NAME, IfContains) {
// ----------------
// test if_contains
// ----------------
using Set = phmap::THIS_HASH_SET<Entry>;
Set m = { {1, 7}, {2, 9} };
const Set& const_m(m);
auto val = 0;
auto get_value = [&val](const Set::value_type& v) { val = v.value; };
EXPECT_TRUE(const_m.if_contains(Entry{2}, get_value));
EXPECT_EQ(val, 9);
EXPECT_FALSE(m.if_contains(Entry{3}, get_value));
}
TEST(THIS_TEST_NAME, ModifyIf) {
// --------------
// test modify_if
// --------------
using Set = phmap::THIS_HASH_SET<Entry>;
Set m = { {1, 7}, {2, 9} };
auto set_value = [](Set::value_type& v) { v.value = 11; };
EXPECT_TRUE(m.modify_if(Entry{2}, set_value));
auto val = 0;
auto get_value = [&val](const Set::value_type& v) { val = v.value; };
EXPECT_TRUE(m.if_contains(Entry{2}, get_value));
EXPECT_EQ(val, 11);
EXPECT_FALSE(m.modify_if(Entry{3}, set_value)); // because m[3] does not exist
}
TEST(THIS_TEST_NAME, LazyEmplaceL) {
// --------------------
// test lazy_emplace_l
// --------------------
using Set = phmap::THIS_HASH_SET<Entry>;
Set m = { {1, 7}, {2, 9} };
// insert a value that is not already present.
// right now m[5] does not exist
m.lazy_emplace_l(Entry{5},
[](Set::value_type& v) { v.value = 6; }, // called only when key was already present
[](const Set::constructor& ctor) { ctor(5, 13); }); // construct value_type in place when key not present
EXPECT_EQ(m.find(Entry{5})->value, 13);
// change a value that is present.
m.lazy_emplace_l(Entry{5},
[](Set::value_type& v) { v.value = 6; }, // called only when key was already present
[](const Set::constructor& ctor) { ctor(5, 13); }); // construct value_type in place when key not present
EXPECT_EQ(m.find(Entry{5})->value, 6);
}
TEST(THIS_TEST_NAME, EraseIf) {
// -------------
// test erase_if
// -------------
using Set = phmap::THIS_HASH_SET<Entry>;
Set m = { {1, 7}, {2, 9}, {5, 6} };
EXPECT_EQ(m.erase_if(Entry{9}, [](Set::value_type& v) { assert(0); return v.value == 12; }), false); // m[9] not present - lambda not called
EXPECT_EQ(m.erase_if(Entry{5}, [](Set::value_type& v) { return v.value == 12; }), false); // m[5] == 6, so erase not performed
EXPECT_EQ(m.find(Entry{5})->value, 6);
EXPECT_EQ(m.erase_if(Entry{5}, [](Set::value_type& v) { return v.value == 6; }), true); // lambda returns true, so m[5] erased
EXPECT_EQ(m.find(Entry{5}), m.end());
}
TEST(THIS_TEST_NAME, ForEach) {
// -------------
// test for_each
// -------------
using Set = phmap::THIS_HASH_SET<Entry>;
Set m = { {1, 7}, {2, 8}, {5, 11} };
int counter = 0;
m.for_each([&counter](const Set::value_type &v) {
++counter;
EXPECT_EQ(v.key + 6, v.value);
});
EXPECT_EQ(counter, 3);
}
TEST(THIS_TEST_NAME, EmplaceSingle) {
using Set = phmap::THIS_HASH_SET<int>;
// --------------------
// test emplace_single
// --------------------
Set m = { 1, 11 };
// emplace_single insert a value if not already present, else removes it
for (int i=0; i<12; ++i)
m.emplace_single(i, [i](const Set::constructor& ctor) { ctor(i); });
EXPECT_EQ(m.count(0), 1);
EXPECT_EQ(m.count(1), 0);
EXPECT_EQ(m.count(2), 1);
EXPECT_EQ(m.count(11), 0);
}
} // namespace
} // namespace priv
} // namespace phmap
#define THIS_HASH_MAP parallel_node_hash_map
#define THIS_TEST_NAME ParallelNodeHashMap
#include "parallel_hash_map_test.cc"
#define THIS_HASH_SET parallel_node_hash_set
#define THIS_TEST_NAME ParallelNodeHashSet
#include "node_hash_set_test.cc"
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <limits>
#include <scoped_allocator>
#include "gtest/gtest.h"
#include "parallel_hashmap/phmap.h"
#include "tracked.h"
namespace phmap {
namespace priv {
namespace {
enum AllocSpec {
kPropagateOnCopy = 1,
kPropagateOnMove = 2,
kPropagateOnSwap = 4,
};
struct AllocState {
size_t num_allocs = 0;
std::set<void*> owned;
};
template <class T,
int Spec = kPropagateOnCopy | kPropagateOnMove | kPropagateOnSwap>
class CheckedAlloc {
public:
template <class, int>
friend class CheckedAlloc;
using value_type = T;
CheckedAlloc() {}
explicit CheckedAlloc(size_t id) : id_(id) {}
CheckedAlloc(const CheckedAlloc&) = default;
CheckedAlloc& operator=(const CheckedAlloc&) = default;
template <class U>
CheckedAlloc(const CheckedAlloc<U, Spec>& that)
: id_(that.id_), state_(that.state_) {}
template <class U>
struct rebind {
using other = CheckedAlloc<U, Spec>;
};
using propagate_on_container_copy_assignment =
std::integral_constant<bool, (Spec & kPropagateOnCopy) != 0>;
using propagate_on_container_move_assignment =
std::integral_constant<bool, (Spec & kPropagateOnMove) != 0>;
using propagate_on_container_swap =
std::integral_constant<bool, (Spec & kPropagateOnSwap) != 0>;
CheckedAlloc select_on_container_copy_construction() const {
if (Spec & kPropagateOnCopy) return *this;
return {};
}
T* allocate(size_t n) {
T* ptr = std::allocator<T>().allocate(n);
track_alloc(ptr);
return ptr;
}
void deallocate(T* ptr, size_t n) {
memset(ptr, 0, n * sizeof(T)); // The freed memory must be unpoisoned.
track_dealloc(ptr);
return std::allocator<T>().deallocate(ptr, n);
}
friend bool operator==(const CheckedAlloc& a, const CheckedAlloc& b) {
return a.id_ == b.id_;
}
friend bool operator!=(const CheckedAlloc& a, const CheckedAlloc& b) {
return !(a == b);
}
size_t num_allocs() const { return state_->num_allocs; }
void swap(CheckedAlloc& that) {
using std::swap;
swap(id_, that.id_);
swap(state_, that.state_);
}
friend void swap(CheckedAlloc& a, CheckedAlloc& b) { a.swap(b); }
friend std::ostream& operator<<(std::ostream& o, const CheckedAlloc& a) {
return o << "alloc(" << a.id_ << ")";
}
private:
void track_alloc(void* ptr) {
AllocState* state = state_.get();
++state->num_allocs;
if (!state->owned.insert(ptr).second)
ADD_FAILURE() << *this << " got previously allocated memory: " << ptr;
}
void track_dealloc(void* ptr) {
if (state_->owned.erase(ptr) != 1)
ADD_FAILURE() << *this
<< " deleting memory owned by another allocator: " << ptr;
}
size_t id_ = std::numeric_limits<size_t>::max();
std::shared_ptr<AllocState> state_ = std::make_shared<AllocState>();
};
struct Identity {
int32_t operator()(int32_t v) const { return v; }
};
struct Policy {
using slot_type = Tracked<int32_t>;
using init_type = Tracked<int32_t>;
using key_type = int32_t;
template <class allocator_type, class... Args>
static void construct(allocator_type* alloc, slot_type* slot,
Args&&... args) {
std::allocator_traits<allocator_type>::construct(
*alloc, slot, std::forward<Args>(args)...);
}
template <class allocator_type>
static void destroy(allocator_type* alloc, slot_type* slot) {
std::allocator_traits<allocator_type>::destroy(*alloc, slot);
}
template <class allocator_type>
static void transfer(allocator_type* alloc, slot_type* new_slot,
slot_type* old_slot) {
construct(alloc, new_slot, std::move(*old_slot));
destroy(alloc, old_slot);
}
template <class F>
static auto apply(F&& f, int32_t v) -> decltype(std::forward<F>(f)(v, v)) {
return std::forward<F>(f)(v, v);
}
template <class F>
static auto apply(F&& f, const slot_type& v)
-> decltype(std::forward<F>(f)(v.val(), v)) {
return std::forward<F>(f)(v.val(), v);
}
template <class F>
static auto apply(F&& f, slot_type&& v)
-> decltype(std::forward<F>(f)(v.val(), std::move(v))) {
return std::forward<F>(f)(v.val(), std::move(v));
}
static slot_type& element(slot_type* slot) { return *slot; }
};
template <int Spec>
struct PropagateTest : public ::testing::Test {
using Alloc = CheckedAlloc<Tracked<int32_t>, Spec>;
using Table = raw_hash_set<Policy, Identity, std::equal_to<int32_t>, Alloc>;
PropagateTest() {
EXPECT_EQ(a1, t1.get_allocator());
EXPECT_NE(a2, t1.get_allocator());
}
Alloc a1 = Alloc(1);
Table t1 = Table(0, a1);
Alloc a2 = Alloc(2);
};
using PropagateOnAll =
PropagateTest<kPropagateOnCopy | kPropagateOnMove | kPropagateOnSwap>;
using NoPropagateOnCopy = PropagateTest<kPropagateOnMove | kPropagateOnSwap>;
using NoPropagateOnMove = PropagateTest<kPropagateOnCopy | kPropagateOnSwap>;
TEST_F(PropagateOnAll, Empty) { EXPECT_EQ(0, a1.num_allocs()); }
TEST_F(PropagateOnAll, InsertAllocates) {
auto it = t1.insert(0).first;
EXPECT_EQ(1, a1.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(0, it->num_copies());
}
TEST_F(PropagateOnAll, InsertDecomposes) {
auto it = t1.insert(0).first;
EXPECT_EQ(1, a1.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(0, it->num_copies());
EXPECT_FALSE(t1.insert(0).second);
EXPECT_EQ(1, a1.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(0, it->num_copies());
}
TEST_F(PropagateOnAll, RehashMoves) {
auto it = t1.insert(0).first;
EXPECT_EQ(0, it->num_moves());
t1.rehash(2 * t1.capacity());
EXPECT_EQ(2, a1.num_allocs());
it = t1.find(0);
EXPECT_EQ(1, it->num_moves());
EXPECT_EQ(0, it->num_copies());
}
TEST_F(PropagateOnAll, CopyConstructor) {
auto it = t1.insert(0).first;
Table u(t1);
EXPECT_EQ(2, a1.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(1, it->num_copies());
}
TEST_F(NoPropagateOnCopy, CopyConstructor) {
auto it = t1.insert(0).first;
Table u(t1);
EXPECT_EQ(1, a1.num_allocs());
EXPECT_EQ(1, u.get_allocator().num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(1, it->num_copies());
}
TEST_F(PropagateOnAll, CopyConstructorWithSameAlloc) {
auto it = t1.insert(0).first;
Table u(t1, a1);
EXPECT_EQ(2, a1.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(1, it->num_copies());
}
TEST_F(NoPropagateOnCopy, CopyConstructorWithSameAlloc) {
auto it = t1.insert(0).first;
Table u(t1, a1);
EXPECT_EQ(2, a1.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(1, it->num_copies());
}
TEST_F(PropagateOnAll, CopyConstructorWithDifferentAlloc) {
auto it = t1.insert(0).first;
Table u(t1, a2);
EXPECT_EQ(a2, u.get_allocator());
EXPECT_EQ(1, a1.num_allocs());
EXPECT_EQ(1, a2.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(1, it->num_copies());
}
TEST_F(NoPropagateOnCopy, CopyConstructorWithDifferentAlloc) {
auto it = t1.insert(0).first;
Table u(t1, a2);
EXPECT_EQ(a2, u.get_allocator());
EXPECT_EQ(1, a1.num_allocs());
EXPECT_EQ(1, a2.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(1, it->num_copies());
}
TEST_F(PropagateOnAll, MoveConstructor) {
auto it = t1.insert(0).first;
Table u(std::move(t1));
EXPECT_EQ(1, a1.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(0, it->num_copies());
}
TEST_F(NoPropagateOnMove, MoveConstructor) {
auto it = t1.insert(0).first;
Table u(std::move(t1));
EXPECT_EQ(1, a1.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(0, it->num_copies());
}
TEST_F(PropagateOnAll, MoveConstructorWithSameAlloc) {
auto it = t1.insert(0).first;
Table u(std::move(t1), a1);
EXPECT_EQ(1, a1.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(0, it->num_copies());
}
TEST_F(NoPropagateOnMove, MoveConstructorWithSameAlloc) {
auto it = t1.insert(0).first;
Table u(std::move(t1), a1);
EXPECT_EQ(1, a1.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(0, it->num_copies());
}
TEST_F(PropagateOnAll, MoveConstructorWithDifferentAlloc) {
auto it = t1.insert(0).first;
Table u(std::move(t1), a2);
it = u.find(0);
EXPECT_EQ(a2, u.get_allocator());
EXPECT_EQ(1, a1.num_allocs());
EXPECT_EQ(1, a2.num_allocs());
EXPECT_EQ(1, it->num_moves());
EXPECT_EQ(0, it->num_copies());
}
TEST_F(NoPropagateOnMove, MoveConstructorWithDifferentAlloc) {
auto it = t1.insert(0).first;
Table u(std::move(t1), a2);
it = u.find(0);
EXPECT_EQ(a2, u.get_allocator());
EXPECT_EQ(1, a1.num_allocs());
EXPECT_EQ(1, a2.num_allocs());
EXPECT_EQ(1, it->num_moves());
EXPECT_EQ(0, it->num_copies());
}
TEST_F(PropagateOnAll, CopyAssignmentWithSameAlloc) {
auto it = t1.insert(0).first;
Table u(0, a1);
u = t1;
EXPECT_EQ(2, a1.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(1, it->num_copies());
}
TEST_F(NoPropagateOnCopy, CopyAssignmentWithSameAlloc) {
auto it = t1.insert(0).first;
Table u(0, a1);
u = t1;
EXPECT_EQ(2, a1.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(1, it->num_copies());
}
TEST_F(PropagateOnAll, CopyAssignmentWithDifferentAlloc) {
auto it = t1.insert(0).first;
Table u(0, a2);
u = t1;
EXPECT_EQ(a1, u.get_allocator());
EXPECT_EQ(2, a1.num_allocs());
EXPECT_EQ(0, a2.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(1, it->num_copies());
}
TEST_F(NoPropagateOnCopy, CopyAssignmentWithDifferentAlloc) {
auto it = t1.insert(0).first;
Table u(0, a2);
u = t1;
EXPECT_EQ(a2, u.get_allocator());
EXPECT_EQ(1, a1.num_allocs());
EXPECT_EQ(1, a2.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(1, it->num_copies());
}
TEST_F(PropagateOnAll, MoveAssignmentWithSameAlloc) {
auto it = t1.insert(0).first;
Table u(0, a1);
u = std::move(t1);
EXPECT_EQ(a1, u.get_allocator());
EXPECT_EQ(1, a1.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(0, it->num_copies());
}
TEST_F(NoPropagateOnMove, MoveAssignmentWithSameAlloc) {
auto it = t1.insert(0).first;
Table u(0, a1);
u = std::move(t1);
EXPECT_EQ(a1, u.get_allocator());
EXPECT_EQ(1, a1.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(0, it->num_copies());
}
TEST_F(PropagateOnAll, MoveAssignmentWithDifferentAlloc) {
auto it = t1.insert(0).first;
Table u(0, a2);
u = std::move(t1);
EXPECT_EQ(a1, u.get_allocator());
EXPECT_EQ(1, a1.num_allocs());
EXPECT_EQ(0, a2.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(0, it->num_copies());
}
TEST_F(NoPropagateOnMove, MoveAssignmentWithDifferentAlloc) {
auto it = t1.insert(0).first;
Table u(0, a2);
u = std::move(t1);
it = u.find(0);
EXPECT_EQ(a2, u.get_allocator());
EXPECT_EQ(1, a1.num_allocs());
EXPECT_EQ(1, a2.num_allocs());
EXPECT_EQ(1, it->num_moves());
EXPECT_EQ(0, it->num_copies());
}
TEST_F(PropagateOnAll, Swap) {
auto it = t1.insert(0).first;
Table u(0, a2);
u.swap(t1);
EXPECT_EQ(a1, u.get_allocator());
EXPECT_EQ(a2, t1.get_allocator());
EXPECT_EQ(1, a1.num_allocs());
EXPECT_EQ(0, a2.num_allocs());
EXPECT_EQ(0, it->num_moves());
EXPECT_EQ(0, it->num_copies());
}
} // namespace
} // namespace priv
} // namespace phmap
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment