#
torch-scatter-2.0.9
## 简介 torch-scatter是一个在PyTorch库中使用的Python库,它用于从张量中随机选择元素并返回一个新的张量。这个库提供了一种简单的方法来创建具有随机标签的数据集,这对于许多机器学习任务非常有用,例如数据增强或生成对抗网络(GANs)。 ## 依赖安装 + pytorch1.10或者pytorch1.13 以及对应的torchvision(建议dtk-22.04.2、dtk-23.04与dtk-23.10) + python 3.7-3.10 ### 1、使用源码编译方式安装 #### 编译环境准备 提供2种环境准备方式: 1. 基于光源pytorch基础镜像环境:镜像下载地址:[https://sourcefind.cn/#/image/dcu/pytorch](https://sourcefind.cn/#/image/dcu/pytorch),根据pytorch、python、dtk及系统下载对应的镜像版本。 2. 基于现有python环境:安装pytorch和torchvision,whl包下载目录:[https://cancon.hpccube.com:65024/4/main/pytorch](https://cancon.hpccube.com:65024/4/main/pytorch),[https://cancon.hpccube.com:65024/4/main/vision](https://cancon.hpccube.com:65024/4/main/vision),根据python、dtk版本,下载对应pytorch和torchvision的whl包。安装命令如下: ```shell pip install torch* (下载的torch的whl包) pip install torchvision* (下载的torchvision的whl包) pip install setuptools==59.5.0 wheel ``` #### 源码编译安装 - 代码下载 ```shell git clone http://developer.hpccube.com/codes/aicomponent/torch-scatter # 根据编译需要切换分支 ``` - 源码编译(进入torch-scatter目录): ``` export C_INCLUDE_PATH=/public/software/apps/DeepLearning/PyTorch_Lib/gflags-2.1.2-build/include:$C_INCLUDE_PATH export CPLUS_INCLUDE_PATH=/public/software/apps/DeepLearning/PyTorch_Lib/gflags-2.1.2-build/include:$CPLUS_INCLUDE_PATH export C_INCLUDE_PATH=/public/software/apps/DeepLearning/PyTorch_Lib/glog-build/include:$C_INCLUDE_PATH export CPLUS_INCLUDE_PATH=/public/software/apps/DeepLearning/PyTorch_Lib/glog-build/include:$CPLUS_INCLUDE_PATH export C_INCLUDE_PATH=$ROCM_PATH/rocrand/include:$C_INCLUDE_PATH export CPLUS_INCLUDE_PATH=$ROCM_PATH/rocrand/include:$CPLUS_INCLUDE_PATH export LD_LIBRARY_PATH=$ROCM_PATH/rocrand/lib:$LD_LIBRARY_PATH export FORCE_ONLY_HIP=1 export CC=hipcc export CXX=hipcc python setup.py install ``` #### 注意事项 + 若使用pip install下载安装过慢,可添加pypi清华源:-i https://pypi.tuna.tsinghua.edu.cn/simple/ + ROCM_PATH为dtk的路径,默认为/opt/dtk ## 验证 ```python import torch from torch_scatter import scatter_max src = torch.tensor([[2, 0, 1, 4, 3], [0, 2, 1, 3, 4]]) index = torch.tensor([[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]]) out, argmax = scatter_max(src, index, dim=-1) ``` ``` print(out) tensor([[0, 0, 4, 3, 2, 0], [2, 4, 3, 0, 0, 0]]) print(argmax) tensor([[5, 5, 3, 4, 0, 1] [1, 4, 3, 5, 5, 5]]) ``` ## Known Issue - 该库没有基于cpu环境修改,仅支持dcu,请在有dcu卡的环境运行。 - 如需完整使用所有pyg功能,请pip install torch-geometric ## 参考资料 - [README_ORIGIN](README_ORIGIN.md) - [https://pypi.org/project/torch-scatter/2.0.9/](https://pypi.org/project/torch-scatter/2.0.9/)