import time import os.path as osp import itertools import argparse import wget import torch from scipy.io import loadmat from torch_scatter import scatter, segment_coo, segment_csr short_rows = [ ('DIMACS10', 'citationCiteseer'), ('SNAP', 'web-Stanford'), ] long_rows = [ ('Janna', 'StocF-1465'), ('GHS_psdef', 'ldoor'), ] def download(dataset): url = 'https://sparse.tamu.edu/mat/{}/{}.mat' for group, name in itertools.chain(long_rows, short_rows): if not osp.exists(f'{name}.mat'): print(f'Downloading {group}/{name}:') wget.download(url.format(group, name)) print('') def bold(text, flag=True): return f'\033[1m{text}\033[0m' if flag else text @torch.no_grad() def correctness(dataset): group, name = dataset mat = loadmat(f'{name}.mat')['Problem'][0][0][2].tocsr() rowptr = torch.from_numpy(mat.indptr).to(args.device, torch.long) row = torch.from_numpy(mat.tocoo().row).to(args.device, torch.long) dim_size = rowptr.size(0) - 1 for size in sizes: try: x = torch.randn((row.size(0), size), device=args.device) x = x.squeeze(-1) if size == 1 else x out1 = scatter(x, row, dim=0, dim_size=dim_size, reduce='add') out2 = segment_coo(x, row, dim_size=dim_size, reduce='add') out3 = segment_csr(x, rowptr, reduce='add') assert torch.allclose(out1, out2, atol=1e-4) assert torch.allclose(out1, out3, atol=1e-4) out1 = scatter(x, row, dim=0, dim_size=dim_size, reduce='mean') out2 = segment_coo(x, row, dim_size=dim_size, reduce='mean') out3 = segment_csr(x, rowptr, reduce='mean') assert torch.allclose(out1, out2, atol=1e-4) assert torch.allclose(out1, out3, atol=1e-4) out1 = scatter(x, row, dim=0, dim_size=dim_size, reduce='min') out2 = segment_coo(x, row, reduce='min') out3 = segment_csr(x, rowptr, reduce='min') assert torch.allclose(out1, out2, atol=1e-4) assert torch.allclose(out1, out3, atol=1e-4) out1 = scatter(x, row, dim=0, dim_size=dim_size, reduce='max') out2 = segment_coo(x, row, reduce='max') out3 = segment_csr(x, rowptr, reduce='max') assert torch.allclose(out1, out2, atol=1e-4) assert torch.allclose(out1, out3, atol=1e-4) except RuntimeError as e: if 'out of memory' not in str(e): raise RuntimeError(e) torch.cuda.empty_cache() def time_func(func, x): try: if torch.cuda.is_available(): torch.cuda.synchronize() t = time.perf_counter() if not args.with_backward: with torch.no_grad(): for _ in range(iters): func(x) else: x = x.requires_grad_() for _ in range(iters): out = func(x) out = out[0] if isinstance(out, tuple) else out torch.autograd.grad(out, x, out, only_inputs=True) if torch.cuda.is_available(): torch.cuda.synchronize() return time.perf_counter() - t except RuntimeError as e: if 'out of memory' not in str(e): raise RuntimeError(e) torch.cuda.empty_cache() return float('inf') def timing(dataset): group, name = dataset mat = loadmat(f'{name}.mat')['Problem'][0][0][2].tocsr() rowptr = torch.from_numpy(mat.indptr).to(args.device, torch.long) row = torch.from_numpy(mat.tocoo().row).to(args.device, torch.long) row2 = row[torch.randperm(row.size(0))] dim_size = rowptr.size(0) - 1 avg_row_len = row.size(0) / dim_size def sca1_row(x): out = x.new_zeros(dim_size, *x.size()[1:]) row_tmp = row.view(-1, 1).expand_as(x) if x.dim() > 1 else row return out.scatter_add_(0, row_tmp, x) def sca1_col(x): out = x.new_zeros(dim_size, *x.size()[1:]) row2_tmp = row2.view(-1, 1).expand_as(x) if x.dim() > 1 else row2 return out.scatter_add_(0, row2_tmp, x) def sca2_row(x): return scatter(x, row, dim=0, dim_size=dim_size, reduce=args.reduce) def sca2_col(x): return scatter(x, row2, dim=0, dim_size=dim_size, reduce=args.reduce) def seg_coo(x): return segment_coo(x, row, reduce=args.reduce) def seg_csr(x): return segment_csr(x, rowptr, reduce=args.reduce) def dense1(x): return getattr(torch, args.reduce)(x, dim=-2) def dense2(x): return getattr(torch, args.reduce)(x, dim=-1) t1, t2, t3, t4, t5, t6, t7, t8 = [], [], [], [], [], [], [], [] for size in sizes: try: x = torch.randn((row.size(0), size), device=args.device) x = x.squeeze(-1) if size == 1 else x t1 += [time_func(sca1_row, x)] t2 += [time_func(sca1_col, x)] t3 += [time_func(sca2_row, x)] t4 += [time_func(sca2_col, x)] t5 += [time_func(seg_coo, x)] t6 += [time_func(seg_csr, x)] del x except RuntimeError as e: if 'out of memory' not in str(e): raise RuntimeError(e) torch.cuda.empty_cache() for t in (t1, t2, t3, t4, t5, t6): t.append(float('inf')) try: x = torch.randn((dim_size, int(avg_row_len + 1), size), device=args.device) t7 += [time_func(dense1, x)] x = x.view(dim_size, size, int(avg_row_len + 1)) t8 += [time_func(dense2, x)] del x except RuntimeError as e: if 'out of memory' not in str(e): raise RuntimeError(e) torch.cuda.empty_cache() for t in (t7, t8): t.append(float('inf')) ts = torch.tensor([t1, t2, t3, t4, t5, t6, t7, t8]) winner = torch.zeros_like(ts, dtype=torch.bool) winner[ts.argmin(dim=0), torch.arange(len(sizes))] = 1 winner = winner.tolist() name = f'{group}/{name}' print(f'{bold(name)} (avg row length: {avg_row_len:.2f}):') print('\t'.join([' '] + [f'{size:>5}' for size in sizes])) print('\t'.join([bold('SCA1_ROW')] + [bold(f'{t:.5f}', f) for t, f in zip(t1, winner[0])])) print('\t'.join([bold('SCA1_COL')] + [bold(f'{t:.5f}', f) for t, f in zip(t2, winner[1])])) print('\t'.join([bold('SCA2_ROW')] + [bold(f'{t:.5f}', f) for t, f in zip(t3, winner[2])])) print('\t'.join([bold('SCA2_COL')] + [bold(f'{t:.5f}', f) for t, f in zip(t4, winner[3])])) print('\t'.join([bold('SEG_COO ')] + [bold(f'{t:.5f}', f) for t, f in zip(t5, winner[4])])) print('\t'.join([bold('SEG_CSR ')] + [bold(f'{t:.5f}', f) for t, f in zip(t6, winner[5])])) print('\t'.join([bold('DENSE1 ')] + [bold(f'{t:.5f}', f) for t, f in zip(t7, winner[6])])) print('\t'.join([bold('DENSE2 ')] + [bold(f'{t:.5f}', f) for t, f in zip(t8, winner[7])])) print() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--reduce', type=str, required=True, choices=['sum', 'mean', 'min', 'max']) parser.add_argument('--with_backward', action='store_true') parser.add_argument('--device', type=str, default='cuda') args = parser.parse_args() iters = 1 if args.device == 'cpu' else 20 sizes = [1, 16, 32, 64, 128, 256, 512] sizes = sizes[:3] if args.device == 'cpu' else sizes for _ in range(10): # Warmup. torch.randn(100, 100, device=args.device).sum() for dataset in itertools.chain(short_rows, long_rows): download(dataset) correctness(dataset) timing(dataset)