import torch from . import scatter_add, scatter_max EPSILON = 1e-16 def _scatter_logsumexp(src, index, dim=-1, out=None, dim_size=None, fill_value=None): if not torch.is_floating_point(src): raise ValueError('logsumexp can be computed over tensors floating point data types.') if fill_value is None: fill_value = torch.finfo(src.dtype).min dim_size = out.shape[dim] if dim_size is None and out is not None else dim_size max_value_per_index, _ = scatter_max(src, index, dim=dim, out=out, dim_size=dim_size, fill_value=fill_value) max_per_src_element = max_value_per_index.gather(dim, index) recentered_scores = src - max_per_src_element sum_per_index = scatter_add( src=recentered_scores.exp(), index=index, dim=dim, out=(src - max_per_src_element).exp() if out is not None else None, dim_size=dim_size, fill_value=fill_value, ) return torch.log(sum_per_index + EPSILON) + max_value_per_index, recentered_scores def scatter_logsumexp(src, index, dim=-1, out=None, dim_size=None, fill_value=None): r""" Numerically safe logsumexp of all values from the :attr:`src` tensor into :attr:`out` at the indices specified in the :attr:`index` tensor along a given axis :attr:`dim`. If multiple indices reference the same location, their **contributions logsumexp** (`cf.` :meth:`~torch_scatter.scatter_add`). For one-dimensional tensors, the operation computes .. math:: \mathrm{out}_i = \log \left( \exp(\mathrm{out}_i) + \sum_j \exp(\mathrm{src}_j) \right) Compute a numerically safe logsumexp operation from the :attr:`src` tensor into :attr:`out` at the indices specified in the :attr:`index` tensor along a given axis :attr:`dim`. For each value in :attr:`src`, its output index is specified by its index in :attr:`input` for dimensions outside of :attr:`dim` and by the corresponding value in :attr:`index` for dimension :attr:`dim`. Args: src (Tensor): The source tensor. index (LongTensor): The indices of elements to scatter. dim (int, optional): The axis along which to index. (default: :obj:`-1`) out (Tensor, optional): The destination tensor. (default: :obj:`None`) dim_size (int, optional): If :attr:`out` is not given, automatically create output with size :attr:`dim_size` at dimension :attr:`dim`. If :attr:`dim_size` is not given, a minimal sized output tensor is returned. (default: :obj:`None`) fill_value (int, optional): If :attr:`out` is not given, automatically fill output tensor with :attr:`fill_value`. If set to :obj:`None`, the output tensor is filled with the smallest possible value of :obj:`src.dtype`. (default: :obj:`None`) :rtype: :class:`Tensor` """ return _scatter_logsumexp(src,index, dim, out, dim_size, fill_value)[0]