from torch.autograd import Function from .utils.gen import gen class ScatterAdd(Function): @staticmethod def forward(ctx, out, src, index, dim): ctx.mark_dirty(out) ctx.save_for_backward(index) return out.scatter_add_(dim, index, src) @staticmethod def backward(ctx, grad_out): index, = ctx.saved_variables grad_src = None if ctx.needs_input_grad[1]: grad_src = grad_out[index] return None, grad_src, None, None def scatter_add(src, index, dim=-1, out=None, dim_size=None, fill_value=0): r""" | .. image:: https://raw.githubusercontent.com/rusty1s/pytorch_scatter/ master/docs/source/_figures/add.svg?sanitize=true :align: center :width: 400px | Sums all values from the :attr:`src` tensor into :attr:`out` at the indices specified in the :attr:`index` tensor along an given axis :attr:`dim`. For each value in :attr:`src`, its output index is specified by its index in :attr:`input` for dimensions outside of :attr:`dim` and by the corresponding value in :attr:`index` for dimension :attr:`dim`. If multiple indices reference the same location, their **contributions add**. Formally, if :attr:`src` and :attr:`index` are n-dimensional tensors with size :math:`(x_0, ..., x_{i-1}, x_i, x_{i+1}, ..., x_{n-1})` and :attr:`dim` = `i`, then :attr:`out` must be an n-dimensional tensor with size :math:`(x_0, ..., x_{i-1}, y, x_{i+1}, ..., x_{n-1})`. Moreover, the values of :attr:`index` must be between `0` and `out.size(dim) - 1`. For one-dimensional tensors, the operation computes .. math:: \mathrm{out}_i = \mathrm{out}_i + \sum_j \mathrm{src}_j where :math:`\sum` is over :math:`j` such that :math:`\mathrm{index}_j = i`. Args: src (Tensor): The source tensor. index (LongTensor): The indices of elements to scatter. dim (int, optional): The axis along which to index. (default: :obj:`-1`) out (Tensor, optional): The destination tensor. (default: :obj:`None`) dim_size (int, optional): If :attr:`out` is not given, automatically create output with size :attr:`dim_size` at dimension :attr:`dim`. If :attr:`dim_size` is not given, a minimal sized output tensor is returned. (default: :obj:`None`) fill_value (int, optional): If :attr:`out` is not given, automatically fill output tensor with :attr:`fill_value`. (default: :obj:`0`) :rtype: :class:`Tensor` .. testsetup:: import torch .. testcode:: from torch_scatter import scatter_add src = torch.tensor([[2, 0, 1, 4, 3], [0, 2, 1, 3, 4]]) index = torch.tensor([[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]]) out = src.new_zeros((2, 6)) out = scatter_add(src, index, out=out) print(out) .. testoutput:: 0 0 4 3 3 0 2 4 4 0 0 0 [torch.FloatTensor of size 2x6] """ src, out, index, dim = gen(src, index, dim, out, dim_size, fill_value) return ScatterAdd.apply(out, src, index, dim)