import os.path as osp from typing import Optional, Tuple import torch torch.ops.load_library( osp.join(osp.dirname(osp.abspath(__file__)), '_scatter.so')) @torch.jit.script def scatter_sum(src: torch.Tensor, index: torch.Tensor, dim: int = -1, out: Optional[torch.Tensor] = None, dim_size: Optional[int] = None) -> torch.Tensor: return torch.ops.torch_scatter.scatter_sum(src, index, dim, out, dim_size) @torch.jit.script def scatter_add(src: torch.Tensor, index: torch.Tensor, dim: int = -1, out: Optional[torch.Tensor] = None, dim_size: Optional[int] = None) -> torch.Tensor: return torch.ops.torch_scatter.scatter_sum(src, index, dim, out, dim_size) @torch.jit.script def scatter_mean(src: torch.Tensor, index: torch.Tensor, dim: int = -1, out: Optional[torch.Tensor] = None, dim_size: Optional[int] = None) -> torch.Tensor: return torch.ops.torch_scatter.scatter_mean(src, index, dim, out, dim_size) @torch.jit.script def scatter_min(src: torch.Tensor, index: torch.Tensor, dim: int = -1, out: Optional[torch.Tensor] = None, dim_size: Optional[int] = None ) -> Tuple[torch.Tensor, torch.Tensor]: return torch.ops.torch_scatter.scatter_min(src, index, dim, out, dim_size) @torch.jit.script def scatter_max(src: torch.Tensor, index: torch.Tensor, dim: int = -1, out: Optional[torch.Tensor] = None, dim_size: Optional[int] = None ) -> Tuple[torch.Tensor, torch.Tensor]: return torch.ops.torch_scatter.scatter_max(src, index, dim, out, dim_size) def scatter(src: torch.Tensor, index: torch.Tensor, dim: int = -1, out: Optional[torch.Tensor] = None, dim_size: Optional[int] = None, reduce: str = "sum") -> torch.Tensor: r""" | .. image:: https://raw.githubusercontent.com/rusty1s/pytorch_scatter/ master/docs/source/_figures/add.svg?sanitize=true :align: center :width: 400px | Reduces all values from the :attr:`src` tensor into :attr:`out` at the indices specified in the :attr:`index` tensor along a given axis :attr:`dim`. For each value in :attr:`src`, its output index is specified by its index in :attr:`src` for dimensions outside of :attr:`dim` and by the corresponding value in :attr:`index` for dimension :attr:`dim`. The applied reduction is defined via the :attr:`reduce` argument. Formally, if :attr:`src` and :attr:`index` are :math:`n`-dimensional tensors with size :math:`(x_0, ..., x_{i-1}, x_i, x_{i+1}, ..., x_{n-1})` and :attr:`dim` = `i`, then :attr:`out` must be an :math:`n`-dimensional tensor with size :math:`(x_0, ..., x_{i-1}, y, x_{i+1}, ..., x_{n-1})`. Moreover, the values of :attr:`index` must be between :math:`0` and :math:`y - 1` in ascending order. The :attr:`index` tensor supports broadcasting in case its dimensions do not match with :attr:`src`. For one-dimensional tensors with :obj:`reduce="sum"`, the operation computes .. math:: \mathrm{out}_i = \mathrm{out}_i + \sum_j~\mathrm{src}_j where :math:`\sum_j` is over :math:`j` such that :math:`\mathrm{index}_j = i`. .. note:: This operation is implemented via atomic operations on the GPU and is therefore **non-deterministic** since the order of parallel operations to the same value is undetermined. For floating-point variables, this results in a source of variance in the result. :param src: The source tensor. :param index: The indices of elements to scatter. :param dim: The axis along which to index. (default: :obj:`-1`) :param out: The destination tensor. :param dim_size: If :attr:`out` is not given, automatically create output with size :attr:`dim_size` at dimension :attr:`dim`. If :attr:`dim_size` is not given, a minimal sized output tensor according to :obj:`index.max() + 1` is returned. :param reduce: The reduce operation (:obj:`"sum"`, :obj:`"mean"`, :obj:`"min"` or :obj:`"max"`). (default: :obj:`"sum"`) :rtype: :class:`Tensor` .. code-block:: python from torch_scatter import scatter src = torch.randn(10, 6, 64) index = torch.tensor([0, 1, 0, 1, 2, 1]) # Broadcasting in the first and last dim. out = scatter(src, index, dim=1, reduce="sum") print(out.size()) .. code-block:: torch.Size([10, 3, 64]) """ if reduce == 'sum' or reduce == 'add': return scatter_sum(src, index, dim, out, dim_size) elif reduce == 'mean': return scatter_mean(src, index, dim, out, dim_size) elif reduce == 'min': return scatter_min(src, index, dim, out, dim_size)[0] elif reduce == 'max': return scatter_max(src, index, dim, out, dim_size)[0] else: raise ValueError