import pytest import torch from torch.autograd import Variable from torch_scatter import scatter_mean_, scatter_mean from .utils import tensor_strs, Tensor # @pytest.mark.parametrize('str', tensor_strs) # def test_scatter_add(str): def test_scatter_mean(): input = [[2, 0, 1, 4, 3], [0, 2, 1, 3, 4]] index = [[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]] input = torch.FloatTensor(input) index = torch.LongTensor(index) output = input.new(2, 6).fill_(0) # expected_output = [[0, 0, 4, 3, 3, 0], [2, 4, 4, 0, 0, 0]] scatter_mean_(output, index, input, dim=1) print(output) # assert output.tolist() == expected_output # output = scatter_add(index, input, dim=1) # assert output.tolist(), expected_output # output = Variable(output).fill_(0) # index = Variable(index) # input = Variable(input, requires_grad=True) # scatter_add_(output, index, input, dim=1) # grad_output = [[0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5]] # grad_output = Tensor(str, grad_output) # output.backward(grad_output) # assert index.data.tolist() == input.grad.data.tolist()