from itertools import product import pytest import torch from torch.autograd import gradcheck import torch_scatter from .utils import dtypes, devices, tensor funcs = ['add', 'sub', 'mul', 'div', 'mean'] indices = [2, 0, 1, 1, 0] @pytest.mark.parametrize('func,device', product(funcs, devices)) def test_backward(func, device): index = torch.tensor(indices, dtype=torch.long, device=device) src = torch.rand(index.size(), dtype=torch.double, device=device) src.requires_grad_() op = getattr(torch_scatter, 'scatter_{}'.format(func)) data = (src, index) assert gradcheck(op, data, eps=1e-6, atol=1e-4) is True tests = [{ 'name': 'max', 'src': [1, 2, 3, 4, 5], 'index': [2, 0, 1, 1, 0], 'dim': 0, 'fill_value': 0, 'grad': [4, 8, 6], 'expected': [6, 0, 0, 8, 4] }, { 'name': 'min', 'src': [1, 2, 3, 4, 5], 'index': [2, 0, 1, 1, 0], 'dim': 0, 'fill_value': 3, 'grad': [4, 8, 6], 'expected': [6, 4, 8, 0, 0] }] @pytest.mark.parametrize('test,dtype,device', product(tests, dtypes, devices)) def test_arg_backward(test, dtype, device): src = tensor(test['src'], dtype, device) src.requires_grad_() index = tensor(test['index'], torch.long, device) grad = tensor(test['grad'], dtype, device) op = getattr(torch_scatter, 'scatter_{}'.format(test['name'])) out, _ = op(src, index, test['dim'], fill_value=test['fill_value']) out.backward(grad) assert src.grad.tolist() == test['expected']