from torch.autograd import Function from torch_scatter.utils.ext import get_func from torch_scatter.utils.gen import gen class ScatterMax(Function): @staticmethod def forward(ctx, out, src, index, dim): arg = index.new_full(out.size(), -1) func = get_func('scatter_max', src) func(src, index, out, arg, dim) ctx.mark_dirty(out) ctx.dim = dim ctx.save_for_backward(index, arg) return out, arg @staticmethod def backward(ctx, grad_out, grad_arg): index, arg = ctx.saved_variables grad_src = None if ctx.needs_input_grad[1]: grad_src = grad_out.new_zeros(index.size()) func = get_func('index_backward', grad_out) func(grad_out, index, arg, grad_src, ctx.dim) return None, grad_src, None, None def scatter_max(src, index, dim=-1, out=None, dim_size=None, fill_value=0): r""" | .. image:: https://raw.githubusercontent.com/rusty1s/pytorch_scatter/ master/docs/source/_figures/max.svg?sanitize=true :align: center :width: 400px | Maximizes all values from the :attr:`src` tensor into :attr:`out` at the indices specified in the :attr:`index` tensor along an given axis :attr:`dim`.If multiple indices reference the same location, their **contributions maximize** (`cf.` :meth:`~torch_scatter.scatter_add`). The second return tensor contains index location in :attr:`src` of each maximum value (known as argmax). For one-dimensional tensors, the operation computes .. math:: \mathrm{out}_i = \max(\mathrm{out}_i, \max_j(\mathrm{src}_j)) where :math:`\max_j` is over :math:`j` such that :math:`\mathrm{index}_j = i`. Args: src (Tensor): The source tensor. index (LongTensor): The indices of elements to scatter. dim (int, optional): The axis along which to index. (default: :obj:`-1`) out (Tensor, optional): The destination tensor. (default: :obj:`None`) dim_size (int, optional): If :attr:`out` is not given, automatically create output with size :attr:`dim_size` at dimension :attr:`dim`. If :attr:`dim_size` is not given, a minimal sized output tensor is returned. (default: :obj:`None`) fill_value (int, optional): If :attr:`out` is not given, automatically fill output tensor with :attr:`fill_value`. (default: :obj:`0`) :rtype: (:class:`Tensor`, :class:`LongTensor`) .. testsetup:: import torch .. testcode:: from torch_scatter import scatter_max src = torch.tensor([[2, 0, 1, 4, 3], [0, 2, 1, 3, 4]]) index = torch.tensor([[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]]) out = src.new_zeros((2, 6)) out, argmax = scatter_max(src, index, out=out) print(out) print(argmax) .. testoutput:: tensor([[ 0, 0, 4, 3, 2, 0], [ 2, 4, 3, 0, 0, 0]]) tensor([[-1, -1, 3, 4, 0, 1], [ 1, 4, 3, -1, -1, -1]]) """ src, out, index, dim = gen(src, index, dim, out, dim_size, fill_value) return ScatterMax.apply(out, src, index, dim)