from .utils import gen_output def scatter_add_(output, index, input, dim=0): """Sums all values from the :attr:`input` tensor into :attr:`output` at the indices specified in the :attr:`index` tensor along an given axis :attr:`dim`. For each value in :attr:`input`, its output index is specified by its index in :attr:`input` for dimensions outside of :attr:`dim` and by the corresponding value in :attr:`index` for dimension :attr:`dim`. If multiple indices reference the same location, their **contributions add**. If :attr:`input` and :attr:`index` are n-dimensional tensors with size :math:`(x_0, ..., x_{i-1}, x_i, x_{i+1}, ..., x_{n-1})` and :attr:`dim` = `i`, then :attr:`output` must be an n-dimensional tensor with size :math:`(x_0, ..., x_{i-1}, y, x_{i+1}, ..., x_{n-1})`. Moreover, the values of :attr:`index` must be between `0` and `output.size(dim) - 1`. For one-dimensional tensors, the operation computes .. math:: \mathrm{output}_i = \mathrm{output}_i + \sum_j \mathrm{input}_j where sum is over :math:`j` such that :math:`\mathrm{index}_j = i`. Args: output (Tensor): The destination tensor index (LongTensor): The indices of elements to scatter input (Tensor): The source tensor dim (int, optional): The axis along which to index :rtype: :class:`Tensor` .. testsetup:: import torch .. testcode:: from torch_scatter import scatter_add_ input = torch.Tensor([[2, 0, 1, 4, 3], [0, 2, 1, 3, 4]]) index = torch.LongTensor([[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]]) output = torch.zeros(2, 6) scatter_add_(output, index, input, dim=1) print(output) .. testoutput:: 0 0 4 3 3 0 2 4 4 0 0 0 [torch.FloatTensor of size 2x6] """ return output.scatter_add_(dim, index, input) def scatter_add(index, input, dim=0, size=None, fill_value=0): """Sums all values from the :attr:`input` tensor at the indices specified in the :attr:`index` tensor along an given axis :attr:`dim` (`cf.` :meth:`~torch_scatter.scatter_add_`). The output size at dimension :attr:`dim` is given by :attr:`size` and must be at least size `index.max(dim) - 1`. If :attr:`size` is not given, a minimal sized output tensor is returned. The output tensor is prefilled with the specified value from :attr:`fill_value`. For one-dimensional tensors, the operation computes .. math:: \mathrm{output}_i = \mathrm{fill\_value} + \sum_j \mathrm{input}_j where sum is over :math:`j` such that :math:`\mathrm{index}_j = i`. Args: index (LongTensor): The indices of elements to scatter input (Tensor): The source tensor dim (int, optional): The axis along which to index size (int, optional): Output size at dimension :attr:`dim` fill_value (int, optional): Initial filling of output tensor :rtype: :class:`Tensor` .. testsetup:: import torch .. testcode:: from torch_scatter import scatter_add input = torch.Tensor([[2, 0, 1, 4, 3], [0, 2, 1, 3, 4]]) index = torch.LongTensor([[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]]) output = scatter_add(index, input, dim=1) print(output) .. testoutput:: 0 0 4 3 3 0 2 4 4 0 0 0 [torch.FloatTensor of size 2x6] """ output = gen_output(index, input, dim, size, fill_value) return scatter_add_(output, index, input, dim)