from itertools import product import pytest import torch import torch_scatter from torch.autograd import gradcheck from torch_scatter.testing import devices, dtypes, reductions, tensor reductions = reductions + ['mul'] tests = [ { 'src': [1, 3, 2, 4, 5, 6], 'index': [0, 1, 0, 1, 1, 3], 'dim': -1, 'sum': [3, 12, 0, 6], 'add': [3, 12, 0, 6], 'mul': [2, 60, 1, 6], 'mean': [1.5, 4, 0, 6], 'min': [1, 3, 0, 6], 'arg_min': [0, 1, 6, 5], 'max': [2, 5, 0, 6], 'arg_max': [2, 4, 6, 5], }, { 'src': [[1, 2], [5, 6], [3, 4], [7, 8], [9, 10], [11, 12]], 'index': [0, 1, 0, 1, 1, 3], 'dim': 0, 'sum': [[4, 6], [21, 24], [0, 0], [11, 12]], 'add': [[4, 6], [21, 24], [0, 0], [11, 12]], 'mul': [[1 * 3, 2 * 4], [5 * 7 * 9, 6 * 8 * 10], [1, 1], [11, 12]], 'mean': [[2, 3], [7, 8], [0, 0], [11, 12]], 'min': [[1, 2], [5, 6], [0, 0], [11, 12]], 'arg_min': [[0, 0], [1, 1], [6, 6], [5, 5]], 'max': [[3, 4], [9, 10], [0, 0], [11, 12]], 'arg_max': [[2, 2], [4, 4], [6, 6], [5, 5]], }, { 'src': [[1, 5, 3, 7, 9, 11], [2, 4, 8, 6, 10, 12]], 'index': [[0, 1, 0, 1, 1, 3], [0, 0, 1, 0, 1, 2]], 'dim': 1, 'sum': [[4, 21, 0, 11], [12, 18, 12, 0]], 'add': [[4, 21, 0, 11], [12, 18, 12, 0]], 'mul': [[1 * 3, 5 * 7 * 9, 1, 11], [2 * 4 * 6, 8 * 10, 12, 1]], 'mean': [[2, 7, 0, 11], [4, 9, 12, 0]], 'min': [[1, 5, 0, 11], [2, 8, 12, 0]], 'arg_min': [[0, 1, 6, 5], [0, 2, 5, 6]], 'max': [[3, 9, 0, 11], [6, 10, 12, 0]], 'arg_max': [[2, 4, 6, 5], [3, 4, 5, 6]], }, { 'src': [[[1, 2], [5, 6], [3, 4]], [[10, 11], [7, 9], [12, 13]]], 'index': [[0, 1, 0], [2, 0, 2]], 'dim': 1, 'sum': [[[4, 6], [5, 6], [0, 0]], [[7, 9], [0, 0], [22, 24]]], 'add': [[[4, 6], [5, 6], [0, 0]], [[7, 9], [0, 0], [22, 24]]], 'mul': [[[3, 8], [5, 6], [1, 1]], [[7, 9], [1, 1], [120, 11 * 13]]], 'mean': [[[2, 3], [5, 6], [0, 0]], [[7, 9], [0, 0], [11, 12]]], 'min': [[[1, 2], [5, 6], [0, 0]], [[7, 9], [0, 0], [10, 11]]], 'arg_min': [[[0, 0], [1, 1], [3, 3]], [[1, 1], [3, 3], [0, 0]]], 'max': [[[3, 4], [5, 6], [0, 0]], [[7, 9], [0, 0], [12, 13]]], 'arg_max': [[[2, 2], [1, 1], [3, 3]], [[1, 1], [3, 3], [2, 2]]], }, { 'src': [[1, 3], [2, 4]], 'index': [[0, 0], [0, 0]], 'dim': 1, 'sum': [[4], [6]], 'add': [[4], [6]], 'mul': [[3], [8]], 'mean': [[2], [3]], 'min': [[1], [2]], 'arg_min': [[0], [0]], 'max': [[3], [4]], 'arg_max': [[1], [1]], }, { 'src': [[[1, 1], [3, 3]], [[2, 2], [4, 4]]], 'index': [[0, 0], [0, 0]], 'dim': 1, 'sum': [[[4, 4]], [[6, 6]]], 'add': [[[4, 4]], [[6, 6]]], 'mul': [[[3, 3]], [[8, 8]]], 'mean': [[[2, 2]], [[3, 3]]], 'min': [[[1, 1]], [[2, 2]]], 'arg_min': [[[0, 0]], [[0, 0]]], 'max': [[[3, 3]], [[4, 4]]], 'arg_max': [[[1, 1]], [[1, 1]]], }, ] @pytest.mark.parametrize('test,reduce,dtype,device', product(tests, reductions, dtypes, devices)) def test_forward(test, reduce, dtype, device): src = tensor(test['src'], dtype, device) index = tensor(test['index'], torch.long, device) dim = test['dim'] expected = tensor(test[reduce], dtype, device) fn = getattr(torch_scatter, 'scatter_' + reduce) jit = torch.jit.script(fn) out1 = fn(src, index, dim) out2 = jit(src, index, dim) if isinstance(out1, tuple): out1, arg_out1 = out1 out2, arg_out2 = out2 arg_expected = tensor(test['arg_' + reduce], torch.long, device) assert torch.all(arg_out1 == arg_expected) assert arg_out1.tolist() == arg_out1.tolist() assert torch.all(out1 == expected) assert out1.tolist() == out2.tolist() @pytest.mark.parametrize('test,reduce,device', product(tests, reductions, devices)) def test_backward(test, reduce, device): src = tensor(test['src'], torch.double, device) src.requires_grad_() index = tensor(test['index'], torch.long, device) dim = test['dim'] assert gradcheck(torch_scatter.scatter, (src, index, dim, None, None, reduce)) @pytest.mark.parametrize('test,reduce,dtype,device', product(tests, reductions, dtypes, devices)) def test_out(test, reduce, dtype, device): src = tensor(test['src'], dtype, device) index = tensor(test['index'], torch.long, device) dim = test['dim'] expected = tensor(test[reduce], dtype, device) out = torch.full_like(expected, -2) getattr(torch_scatter, 'scatter_' + reduce)(src, index, dim, out) if reduce == 'sum' or reduce == 'add': expected = expected - 2 elif reduce == 'mul': expected = out # We can not really test this here. elif reduce == 'mean': expected = out # We can not really test this here. elif reduce == 'min': expected = expected.fill_(-2) elif reduce == 'max': expected[expected == 0] = -2 else: raise ValueError assert torch.all(out == expected) @pytest.mark.parametrize('test,reduce,dtype,device', product(tests, reductions, dtypes, devices)) def test_non_contiguous(test, reduce, dtype, device): src = tensor(test['src'], dtype, device) index = tensor(test['index'], torch.long, device) dim = test['dim'] expected = tensor(test[reduce], dtype, device) if src.dim() > 1: src = src.transpose(0, 1).contiguous().transpose(0, 1) if index.dim() > 1: index = index.transpose(0, 1).contiguous().transpose(0, 1) out = getattr(torch_scatter, 'scatter_' + reduce)(src, index, dim) if isinstance(out, tuple): out, arg_out = out arg_expected = tensor(test['arg_' + reduce], torch.long, device) assert torch.all(arg_out == arg_expected) assert torch.all(out == expected)