from itertools import product import pytest import torch import torch_scatter from torch_scatter.testing import dtypes, reductions, tensor tests = [ { 'src': [1, 2, 3, 4, 5, 6], 'index': [0, 0, 1, 1, 1, 3], 'indptr': [0, 2, 5, 5, 6], 'dim': 0, 'sum': [3, 12, 0, 6], 'add': [3, 12, 0, 6], 'mean': [1.5, 4, 0, 6], 'min': [1, 3, 0, 6], 'max': [2, 5, 0, 6], }, ] @pytest.mark.skipif(not torch.cuda.is_available(), reason='CUDA not available') @pytest.mark.skipif(torch.cuda.device_count() < 2, reason='No multiple GPUS') @pytest.mark.parametrize('test,reduce,dtype', product(tests, reductions, dtypes)) def test_forward(test, reduce, dtype): device = torch.device('cuda:1') src = tensor(test['src'], dtype, device) index = tensor(test['index'], torch.long, device) indptr = tensor(test['indptr'], torch.long, device) dim = test['dim'] expected = tensor(test[reduce], dtype, device) out = torch_scatter.scatter(src, index, dim, reduce=reduce) assert torch.all(out == expected) out = torch_scatter.segment_coo(src, index, reduce=reduce) assert torch.all(out == expected) out = torch_scatter.segment_csr(src, indptr, reduce=reduce) assert torch.all(out == expected)