import time import itertools import argparse import torch from scipy.io import loadmat from torch_scatter import gather_coo, gather_csr from scatter_segment import short_rows, long_rows, download, bold @torch.no_grad() def correctness(dataset): group, name = dataset mat = loadmat(f'{name}.mat')['Problem'][0][0][2].tocsr() rowptr = torch.from_numpy(mat.indptr).to(args.device, torch.long) row = torch.from_numpy(mat.tocoo().row).to(args.device, torch.long) dim_size = rowptr.size(0) - 1 for size in sizes[1:]: try: x = torch.randn((dim_size, size), device=args.device) x = x.squeeze(-1) if size == 1 else x out1 = x.index_select(0, row) out2 = gather_coo(x, row) out3 = gather_csr(x, rowptr) assert torch.allclose(out1, out2, atol=1e-4) assert torch.allclose(out1, out3, atol=1e-4) except RuntimeError as e: if 'out of memory' not in str(e): raise RuntimeError(e) torch.cuda.empty_cache() def time_func(func, x): try: if torch.cuda.is_available(): torch.cuda.synchronize() t = time.perf_counter() if not args.with_backward: with torch.no_grad(): for _ in range(iters): func(x) else: x = x.requires_grad_() for _ in range(iters): out = func(x) torch.autograd.grad(out, x, out, only_inputs=True) if torch.cuda.is_available(): torch.cuda.synchronize() return time.perf_counter() - t except RuntimeError as e: if 'out of memory' not in str(e): raise RuntimeError(e) torch.cuda.empty_cache() return float('inf') def timing(dataset): group, name = dataset mat = loadmat(f'{name}.mat')['Problem'][0][0][2].tocsr() rowptr = torch.from_numpy(mat.indptr).to(args.device, torch.long) row = torch.from_numpy(mat.tocoo().row).to(args.device, torch.long) dim_size = rowptr.size(0) - 1 avg_row_len = row.size(0) / dim_size def select(x): return x.index_select(0, row) def gather(x): return x.gather(0, row.view(-1, 1).expand(-1, x.size(1))) def gat_coo(x): return gather_coo(x, row) def gat_csr(x): return gather_csr(x, rowptr) t1, t2, t3, t4 = [], [], [], [] for size in sizes: try: x = torch.randn((dim_size, size), device=args.device) t1 += [time_func(select, x)] t2 += [time_func(gather, x)] t3 += [time_func(gat_coo, x)] t4 += [time_func(gat_csr, x)] del x except RuntimeError as e: if 'out of memory' not in str(e): raise RuntimeError(e) torch.cuda.empty_cache() for t in (t1, t2, t3, t4): t.append(float('inf')) ts = torch.tensor([t1, t2, t3, t4]) winner = torch.zeros_like(ts, dtype=torch.bool) winner[ts.argmin(dim=0), torch.arange(len(sizes))] = 1 winner = winner.tolist() name = f'{group}/{name}' print(f'{bold(name)} (avg row length: {avg_row_len:.2f}):') print('\t'.join([' '] + [f'{size:>5}' for size in sizes])) print('\t'.join([bold('SELECT ')] + [bold(f'{t:.5f}', f) for t, f in zip(t1, winner[0])])) print('\t'.join([bold('GAT ')] + [bold(f'{t:.5f}', f) for t, f in zip(t2, winner[1])])) print('\t'.join([bold('GAT_COO')] + [bold(f'{t:.5f}', f) for t, f in zip(t3, winner[2])])) print('\t'.join([bold('GAT_CSR')] + [bold(f'{t:.5f}', f) for t, f in zip(t4, winner[3])])) print() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--with_backward', action='store_true') parser.add_argument('--device', type=str, default='cuda') args = parser.parse_args() iters = 1 if args.device == 'cpu' else 20 sizes = [1, 16, 32, 64, 128, 256, 512] sizes = sizes[:3] if args.device == 'cpu' else sizes for _ in range(10): # Warmup. torch.randn(100, 100, device=args.device).sum() for dataset in itertools.chain(short_rows, long_rows): download(dataset) correctness(dataset) timing(dataset)