Commit fdba2556 authored by rusty1s's avatar rusty1s
Browse files

mean grad fix

parent 45d8a4ca
...@@ -6,30 +6,28 @@ from torch_scatter import scatter_mean_, scatter_mean ...@@ -6,30 +6,28 @@ from torch_scatter import scatter_mean_, scatter_mean
from .utils import tensor_strs, Tensor from .utils import tensor_strs, Tensor
# @pytest.mark.parametrize('str', tensor_strs) @pytest.mark.parametrize('str', tensor_strs)
# def test_scatter_add(str): def test_scatter_mean(str):
def test_scatter_mean(): input = [[2, 0, 8, 4, 3], [0, 2, 1, 3, 4]]
input = [[2, 0, 1, 4, 3], [0, 2, 1, 3, 4]]
index = [[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]] index = [[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]]
input = torch.FloatTensor(input) input = Tensor(str, input)
index = torch.LongTensor(index) index = torch.LongTensor(index)
output = input.new(2, 6).fill_(0) output = input.new(2, 6).fill_(0)
# expected_output = [[0, 0, 4, 3, 3, 0], [2, 4, 4, 0, 0, 0]] expected_output = [[0, 0, 4, 3, 5, 0], [1, 4, 2, 0, 0, 0]]
scatter_mean_(output, index, input, dim=1) scatter_mean_(output, index, input, dim=1)
print(output) assert output.tolist() == expected_output
# assert output.tolist() == expected_output
# output = scatter_add(index, input, dim=1) output = scatter_mean(index, input, dim=1)
# assert output.tolist(), expected_output assert output.tolist(), expected_output
# output = Variable(output).fill_(0) output = Variable(output).fill_(0)
# index = Variable(index) index = Variable(index)
# input = Variable(input, requires_grad=True) input = Variable(input, requires_grad=True)
# scatter_add_(output, index, input, dim=1) scatter_mean_(output, index, input, dim=1)
# grad_output = [[0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5]] grad_output = [[0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5]]
# grad_output = Tensor(str, grad_output) grad_output = Tensor(str, grad_output)
# output.backward(grad_output) output.backward(grad_output)
# assert index.data.tolist() == input.grad.data.tolist() assert index.data.tolist() == input.grad.data.tolist()
import torch
from torch.autograd import Variable
from .scatter import scatter from .scatter import scatter
from .utils import gen_output from .utils import gen_output
...@@ -43,10 +46,13 @@ def scatter_div(index, input, dim=0, max_index=None, fill_value=1): ...@@ -43,10 +46,13 @@ def scatter_div(index, input, dim=0, max_index=None, fill_value=1):
def scatter_mean_(output, index, input, dim=0): def scatter_mean_(output, index, input, dim=0):
if torch.is_tensor(input):
output_count = output.new(output.size()).fill_(0) output_count = output.new(output.size()).fill_(0)
else:
output_count = Variable(output.data.new(output.size()).fill_(0))
scatter('mean', dim, output, index, input, output_count) scatter('mean', dim, output, index, input, output_count)
output_count[output_count == 0] = 1
output /= output_count output /= output_count
output[output != output] = 0
return output return output
......
...@@ -34,7 +34,10 @@ class _Scatter(Function): ...@@ -34,7 +34,10 @@ class _Scatter(Function):
if self.needs_input_grad[2]: if self.needs_input_grad[2]:
grad_input = grad.gather(self.dim, index.data) grad_input = grad.gather(self.dim, index.data)
if len(grad) == 3:
return grad_output, None, grad_input return grad_output, None, grad_input
else:
return grad_output, None, grad_input, None
def scatter(name, dim, *data): def scatter(name, dim, *data):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment