Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
torch-scatter
Commits
aae9e125
"vscode:/vscode.git/clone" did not exist on "14cc5c0599c01d1406a1a5edcab944ad436cfaba"
Commit
aae9e125
authored
Jan 09, 2020
by
rusty1s
Browse files
update benchmark
parent
d7f9176e
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
49 additions
and
67 deletions
+49
-67
benchmark/gather.py
benchmark/gather.py
+40
-60
benchmark/scatter_segment.py
benchmark/scatter_segment.py
+9
-7
No files found.
benchmark/gather.py
View file @
aae9e125
# flake8: noqa
import
time
import
itertools
import
argparse
import
torch
from
scipy.io
import
loadmat
from
torch_scatter
import
gather_coo
,
gather_csr
from
scatter_segment
import
iters
,
device
,
sizes
from
scatter_segment
import
iters
,
sizes
from
scatter_segment
import
short_rows
,
long_rows
,
download
,
bold
...
...
@@ -14,13 +17,13 @@ from scatter_segment import short_rows, long_rows, download, bold
def
correctness
(
dataset
):
group
,
name
=
dataset
mat
=
loadmat
(
f
'
{
name
}
.mat'
)[
'Problem'
][
0
][
0
][
2
].
tocsr
()
rowptr
=
torch
.
from_numpy
(
mat
.
indptr
).
to
(
device
,
torch
.
long
)
row
=
torch
.
from_numpy
(
mat
.
tocoo
().
row
).
to
(
device
,
torch
.
long
)
rowptr
=
torch
.
from_numpy
(
mat
.
indptr
).
to
(
args
.
device
,
torch
.
long
)
row
=
torch
.
from_numpy
(
mat
.
tocoo
().
row
).
to
(
args
.
device
,
torch
.
long
)
dim_size
=
rowptr
.
size
(
0
)
-
1
for
size
in
sizes
[
1
:]:
try
:
x
=
torch
.
randn
((
dim_size
,
size
),
device
=
device
)
x
=
torch
.
randn
((
dim_size
,
size
),
device
=
args
.
device
)
x
=
x
.
squeeze
(
-
1
)
if
size
==
1
else
x
out1
=
x
.
index_select
(
0
,
row
)
...
...
@@ -34,75 +37,48 @@ def correctness(dataset):
@
torch
.
no_grad
()
def
timing
(
dataset
):
group
,
name
=
dataset
mat
=
loadmat
(
f
'
{
name
}
.mat'
)[
'Problem'
][
0
][
0
][
2
].
tocsr
()
rowptr
=
torch
.
from_numpy
(
mat
.
indptr
).
to
(
device
,
torch
.
long
)
row
=
torch
.
from_numpy
(
mat
.
tocoo
().
row
).
to
(
device
,
torch
.
long
)
dim_size
=
rowptr
.
size
(
0
)
-
1
avg_row_len
=
row
.
size
(
0
)
/
dim_size
t1
,
t2
,
t3
,
t4
=
[],
[],
[],
[]
for
size
in
sizes
:
try
:
x
=
torch
.
randn
((
dim_size
,
size
),
device
=
device
)
row_expand
=
row
.
view
(
-
1
,
1
).
expand
(
-
1
,
x
.
size
(
-
1
))
x
=
x
.
squeeze
(
-
1
)
if
size
==
1
else
x
row_expand
=
row_expand
.
squeeze
(
-
1
)
if
size
==
1
else
row_expand
def
time_func
(
func
,
x
):
try
:
torch
.
cuda
.
synchronize
()
t
=
time
.
perf_counter
()
for
_
in
range
(
iters
):
out
=
x
.
index_select
(
0
,
row
)
del
out
func
(
x
)
torch
.
cuda
.
synchronize
()
t1
.
append
(
time
.
perf_counter
()
-
t
)
return
time
.
perf_counter
()
-
t
except
RuntimeError
:
torch
.
cuda
.
empty_cache
()
t1
.
append
(
float
(
'inf'
)
)
return
float
(
'inf'
)
try
:
torch
.
cuda
.
synchronize
()
t
=
time
.
perf_counter
()
for
_
in
range
(
iters
):
out
=
x
.
gather
(
0
,
row_expand
)
del
out
torch
.
cuda
.
synchronize
()
t2
.
append
(
time
.
perf_counter
()
-
t
)
except
RuntimeError
:
torch
.
cuda
.
empty_cache
()
t2
.
append
(
float
(
'inf'
))
try
:
torch
.
cuda
.
synchronize
()
t
=
time
.
perf_counter
()
for
_
in
range
(
iters
):
out
=
gather_coo
(
x
,
row
)
del
out
torch
.
cuda
.
synchronize
()
t3
.
append
(
time
.
perf_counter
()
-
t
)
except
RuntimeError
:
torch
.
cuda
.
empty_cache
()
t3
.
append
(
float
(
'inf'
))
@
torch
.
no_grad
()
def
timing
(
dataset
):
group
,
name
=
dataset
mat
=
loadmat
(
f
'
{
name
}
.mat'
)[
'Problem'
][
0
][
0
][
2
].
tocsr
()
rowptr
=
torch
.
from_numpy
(
mat
.
indptr
).
to
(
args
.
device
,
torch
.
long
)
row
=
torch
.
from_numpy
(
mat
.
tocoo
().
row
).
to
(
args
.
device
,
torch
.
long
)
dim_size
=
rowptr
.
size
(
0
)
-
1
avg_row_len
=
row
.
size
(
0
)
/
dim_size
select
=
lambda
x
:
x
.
index_select
(
0
,
row
)
gather
=
lambda
x
:
x
.
gather
(
0
,
row
.
view
(
-
1
,
1
).
expand
(
-
1
,
x
.
size
(
1
)))
gat_coo
=
lambda
x
:
gather_coo
(
x
,
row
)
gat_csr
=
lambda
x
:
gather_csr
(
x
,
rowptr
)
t1
,
t2
,
t3
,
t4
=
[],
[],
[],
[]
for
size
in
sizes
:
try
:
torch
.
cuda
.
synchronize
()
t
=
time
.
perf_counter
()
for
_
in
range
(
iters
):
out
=
gather_csr
(
x
,
rowptr
)
del
out
torch
.
cuda
.
synchronize
()
t4
.
append
(
time
.
perf_counter
()
-
t
)
except
RuntimeError
:
torch
.
cuda
.
empty_cache
()
t4
.
append
(
float
(
'inf'
))
x
=
torch
.
randn
((
dim_size
,
size
),
device
=
args
.
device
)
t1
+=
[
time_func
(
select
,
x
)]
t2
+=
[
time_func
(
gather
,
x
)]
t3
+=
[
time_func
(
gat_coo
,
x
)]
t4
+=
[
time_func
(
gat_csr
,
x
)]
del
x
except
RuntimeError
:
torch
.
cuda
.
empty_cache
()
for
t
in
(
t1
,
t2
,
t3
):
for
t
in
(
t1
,
t2
,
t3
,
t4
):
t
.
append
(
float
(
'inf'
))
ts
=
torch
.
tensor
([
t1
,
t2
,
t3
,
t4
])
...
...
@@ -125,8 +101,12 @@ def timing(dataset):
if
__name__
==
'__main__'
:
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'--device'
,
type
=
str
,
default
=
'cuda'
)
args
=
parser
.
parse_args
()
for
_
in
range
(
10
):
# Warmup.
torch
.
randn
(
100
,
100
,
device
=
device
).
sum
()
torch
.
randn
(
100
,
100
,
device
=
args
.
device
).
sum
()
for
dataset
in
itertools
.
chain
(
short_rows
,
long_rows
):
download
(
dataset
)
correctness
(
dataset
)
...
...
benchmark/scatter_segment.py
View file @
aae9e125
...
...
@@ -3,8 +3,8 @@
import
time
import
os.path
as
osp
import
itertools
import
argparse
import
argparse
import
wget
import
torch
from
scipy.io
import
loadmat
...
...
@@ -13,12 +13,6 @@ import torch_scatter
from
torch_scatter
import
scatter_add
,
scatter_mean
,
scatter_min
,
scatter_max
from
torch_scatter
import
segment_coo
,
segment_csr
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'--reduce'
,
type
=
str
,
required
=
True
)
parser
.
add_argument
(
'--device'
,
type
=
str
,
default
=
'cuda'
)
args
=
parser
.
parse_args
()
args
.
dense_reduce
=
'sum'
if
args
.
reduce
==
'add'
else
args
.
reduce
iters
=
20
sizes
=
[
1
,
16
,
32
,
64
,
128
,
256
,
512
]
...
...
@@ -94,6 +88,7 @@ def correctness(dataset):
torch
.
cuda
.
empty_cache
()
@
torch
.
no_grad
()
def
time_func
(
func
,
x
):
try
:
torch
.
cuda
.
synchronize
()
...
...
@@ -184,6 +179,13 @@ def timing(dataset):
if
__name__
==
'__main__'
:
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'--reduce'
,
type
=
str
,
required
=
True
,
choices
=
[
'add'
,
'mean'
,
'min'
,
'max'
])
parser
.
add_argument
(
'--device'
,
type
=
str
,
default
=
'cuda'
)
args
=
parser
.
parse_args
()
args
.
dense_reduce
=
'sum'
if
args
.
reduce
==
'add'
else
args
.
reduce
for
_
in
range
(
10
):
# Warmup.
torch
.
randn
(
100
,
100
,
device
=
args
.
device
).
sum
()
for
dataset
in
itertools
.
chain
(
short_rows
,
long_rows
):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment