# coding=utf-8 # SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # import os import numpy as np import torch import torch.nn as nn import torch.fft import torch.nn.functional as F from torch_harmonics.quadrature import * from torch_harmonics.legendre import * from torch_harmonics.distributed import polar_group_size, azimuth_group_size, distributed_transpose_azimuth, distributed_transpose_polar from torch_harmonics.distributed import polar_group_rank, azimuth_group_rank class DistributedRealSHT(nn.Module): """ Defines a module for computing the forward (real-valued) SHT. Precomputes Legendre Gauss nodes, weights and associated Legendre polynomials on these nodes. The SHT is applied to the last two dimensions of the input [1] Schaeffer, N. Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations, G3: Geochemistry, Geophysics, Geosystems. [2] Wang, B., Wang, L., Xie, Z.; Accurate calculation of spherical and vector spherical harmonic expansions via spectral element grids; Adv Comput Math. """ def __init__(self, nlat, nlon, lmax=None, mmax=None, grid="lobatto", norm="ortho", csphase=True): """ Initializes the SHT Layer, precomputing the necessary quadrature weights Parameters: nlat: input grid resolution in the latitudinal direction nlon: input grid resolution in the longitudinal direction grid: grid in the latitude direction (for now only tensor product grids are supported) """ super().__init__() self.nlat = nlat self.nlon = nlon self.grid = grid self.norm = norm self.csphase = csphase # TODO: include assertions regarding the dimensions # compute quadrature points if self.grid == "legendre-gauss": cost, w = legendre_gauss_weights(nlat, -1, 1) self.lmax = lmax or self.nlat elif self.grid == "lobatto": cost, w = lobatto_weights(nlat, -1, 1) self.lmax = lmax or self.nlat-1 elif self.grid == "equiangular": cost, w = clenshaw_curtiss_weights(nlat, -1, 1) # cost, w = fejer2_weights(nlat, -1, 1) self.lmax = lmax or self.nlat else: raise(ValueError("Unknown quadrature mode")) # get the comms grid: self.comm_size_polar = polar_group_size() self.comm_rank_polar = polar_group_rank() self.comm_size_azimuth = azimuth_group_size() self.comm_rank_azimuth = azimuth_group_rank() # apply cosine transform and flip them tq = np.flip(np.arccos(cost)) # determine the dimensions self.mmax = mmax or self.nlon // 2 + 1 # spatial paddings latdist = (self.nlat + self.comm_size_polar - 1) // self.comm_size_polar self.nlatpad = latdist * self.comm_size_polar - self.nlat londist = (self.nlon + self.comm_size_azimuth - 1) // self.comm_size_azimuth self.nlonpad = londist * self.comm_size_azimuth - self.nlon # frequency paddings ldist = (self.lmax + self.comm_size_polar - 1) // self.comm_size_polar self.lpad = ldist * self.comm_size_polar - self.lmax mdist = (self.mmax + self.comm_size_azimuth - 1) // self.comm_size_azimuth self.mpad = mdist * self.comm_size_azimuth - self.mmax # combine quadrature weights with the legendre weights weights = torch.from_numpy(w) pct = precompute_legpoly(self.mmax, self.lmax, tq, norm=self.norm, csphase=self.csphase) weights = torch.einsum('mlk,k->mlk', pct, weights) # we need to split in m, pad before: weights = F.pad(weights, [0, 0, 0, 0, 0, self.mpad], mode="constant") weights = torch.split(weights, (self.mmax+self.mpad) // self.comm_size_azimuth, dim=0)[self.comm_rank_azimuth] # compute the local pad and size # spatial self.nlat_local = min(latdist, self.nlat - self.comm_rank_polar * latdist) self.nlatpad_local = latdist - self.nlat_local self.nlon_local = min(londist, self.nlon - self.comm_rank_azimuth * londist) self.nlonpad_local = londist - self.nlon_local # frequency self.lmax_local = min(ldist, self.lmax - self.comm_rank_polar * ldist) self.lpad_local = ldist - self.lmax_local self.mmax_local = min(mdist, self.mmax - self.comm_rank_azimuth * mdist) self.mpad_local = mdist - self.mmax_local # remember quadrature weights self.register_buffer('weights', weights, persistent=False) def extra_repr(self): """ Pretty print module """ return f'nlat={self.nlat}, nlon={self.nlon},\n lmax={self.lmax}, mmax={self.mmax},\n grid={self.grid}, csphase={self.csphase}' def forward(self, x: torch.Tensor): # we need to ensure that we can split the channels evenly assert(x.shape[1] % self.comm_size_polar == 0) assert(x.shape[1] % self.comm_size_azimuth == 0) # h and w is split. First we make w local by transposing into channel dim if self.comm_size_azimuth > 1: xt = distributed_transpose_azimuth.apply(x, (1, -1)) else: xt = x # apply real fft in the longitudinal direction: make sure to truncate to nlon xtf = 2.0 * torch.pi * torch.fft.rfft(xt, n=self.nlon, dim=-1, norm="forward") # truncate xtft = xtf[..., :self.mmax] # pad the dim to allow for splitting xtfp = F.pad(xtft, [0, self.mpad], mode="constant") # transpose: after this, m is split and c is local if self.comm_size_azimuth > 1: y = distributed_transpose_azimuth.apply(xtfp, (-1, 1)) else: y = xtfp # transpose: after this, c is split and h is local if self.comm_size_polar > 1: yt = distributed_transpose_polar.apply(y, (1, -2)) else: yt = y # the input data might be padded, make sure to truncate to nlat: ytt = yt[..., :self.nlat, :] # do the Legendre-Gauss quadrature yttr = torch.view_as_real(ytt) # contraction yor = torch.einsum('...kmr,mlk->...lmr', yttr, self.weights.to(yttr.dtype)).contiguous() # pad if required, truncation is implicit yopr = F.pad(yor, [0, 0, 0, 0, 0, self.lpad], mode="constant") yop = torch.view_as_complex(yopr) # transpose: after this, l is split and c is local if self.comm_size_polar > 1: y = distributed_transpose_polar.apply(yop, (-2, 1)) else: y = yop return y class DistributedInverseRealSHT(nn.Module): """ Defines a module for computing the inverse (real-valued) SHT. Precomputes Legendre Gauss nodes, weights and associated Legendre polynomials on these nodes. nlat, nlon: Output dimensions lmax, mmax: Input dimensions (spherical coefficients). For convenience, these are inferred from the output dimensions [1] Schaeffer, N. Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations, G3: Geochemistry, Geophysics, Geosystems. [2] Wang, B., Wang, L., Xie, Z.; Accurate calculation of spherical and vector spherical harmonic expansions via spectral element grids; Adv Comput Math. """ def __init__(self, nlat, nlon, lmax=None, mmax=None, grid="lobatto", norm="ortho", csphase=True): super().__init__() self.nlat = nlat self.nlon = nlon self.grid = grid self.norm = norm self.csphase = csphase # compute quadrature points if self.grid == "legendre-gauss": cost, _ = legendre_gauss_weights(nlat, -1, 1) self.lmax = lmax or self.nlat elif self.grid == "lobatto": cost, _ = lobatto_weights(nlat, -1, 1) self.lmax = lmax or self.nlat-1 elif self.grid == "equiangular": cost, _ = clenshaw_curtiss_weights(nlat, -1, 1) self.lmax = lmax or self.nlat else: raise(ValueError("Unknown quadrature mode")) # get the comms grid: self.comm_size_polar = polar_group_size() self.comm_rank_polar = polar_group_rank() self.comm_size_azimuth = azimuth_group_size() self.comm_rank_azimuth = azimuth_group_rank() # apply cosine transform and flip them t = np.flip(np.arccos(cost)) # determine the dimensions self.mmax = mmax or self.nlon // 2 + 1 # spatial paddings latdist = (self.nlat + self.comm_size_polar - 1) // self.comm_size_polar self.nlatpad = latdist * self.comm_size_polar - self.nlat londist = (self.nlon + self.comm_size_azimuth - 1) // self.comm_size_azimuth self.nlonpad = londist * self.comm_size_azimuth - self.nlon # frequency paddings ldist = (self.lmax + self.comm_size_polar - 1) // self.comm_size_polar self.lpad = ldist * self.comm_size_polar - self.lmax mdist = (self.mmax + self.comm_size_azimuth - 1) // self.comm_size_azimuth self.mpad = mdist * self.comm_size_azimuth - self.mmax # compute legende polynomials pct = precompute_legpoly(self.mmax, self.lmax, t, norm=self.norm, inverse=True, csphase=self.csphase) # split in m pct = F.pad(pct, [0, 0, 0, 0, 0, self.mpad], mode="constant") pct = torch.split(pct, (self.mmax+self.mpad) // self.comm_size_azimuth, dim=0)[self.comm_rank_azimuth] # compute the local pads and sizes # spatial self.nlat_local = min(latdist, self.nlat - self.comm_rank_polar * latdist) self.nlatpad_local = latdist - self.nlat_local self.nlon_local = min(londist, self.nlon - self.comm_rank_azimuth * londist) self.nlonpad_local = londist - self.nlon_local # frequency self.lmax_local = min(ldist, self.lmax - self.comm_rank_polar * ldist) self.lpad_local = ldist - self.lmax_local self.mmax_local = min(mdist, self.mmax - self.comm_rank_azimuth * mdist) self.mpad_local = mdist - self.mmax_local # register self.register_buffer('pct', pct, persistent=False) def extra_repr(self): """ Pretty print module """ return f'nlat={self.nlat}, nlon={self.nlon},\n lmax={self.lmax}, mmax={self.mmax},\n grid={self.grid}, csphase={self.csphase}' def forward(self, x: torch.Tensor): # we need to ensure that we can split the channels evenly assert(x.shape[1] % self.comm_size_polar == 0) assert(x.shape[1] % self.comm_size_azimuth == 0) # transpose: after that, channels are split, l is local: if self.comm_size_polar > 1: xt = distributed_transpose_polar.apply(x, (1, -2)) else: xt = x # remove padding in l: xtt = xt[..., :self.lmax, :] # Evaluate associated Legendre functions on the output nodes xttr = torch.view_as_real(xtt) # einsum xs = torch.einsum('...lmr, mlk->...kmr', xttr, self.pct.to(xttr.dtype)).contiguous() x = torch.view_as_complex(xs) # transpose: after this, l is split and channels are local xp = F.pad(x, [0, 0, 0, self.nlatpad]) if self.comm_size_polar > 1: y = distributed_transpose_polar.apply(xp, (-2, 1)) else: y = xp # transpose: after this, channels are split and m is local if self.comm_size_azimuth > 1: yt = distributed_transpose_azimuth.apply(y, (1, -1)) else: yt = y # truncate ytt = yt[..., :self.mmax] # apply the inverse (real) FFT x = torch.fft.irfft(ytt, n=self.nlon, dim=-1, norm="forward") # pad before we transpose back xp = F.pad(x, [0, self.nlonpad]) # transpose: after this, m is split and channels are local if self.comm_size_azimuth > 1: out = distributed_transpose_azimuth.apply(xp, (-1, 1)) else: out = xp return out class DistributedRealVectorSHT(nn.Module): """ Defines a module for computing the forward (real) vector SHT. Precomputes Legendre Gauss nodes, weights and associated Legendre polynomials on these nodes. The SHT is applied to the last three dimensions of the input. [1] Schaeffer, N. Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations, G3: Geochemistry, Geophysics, Geosystems. [2] Wang, B., Wang, L., Xie, Z.; Accurate calculation of spherical and vector spherical harmonic expansions via spectral element grids; Adv Comput Math. """ def __init__(self, nlat, nlon, lmax=None, mmax=None, grid="lobatto", norm="ortho", csphase=True): """ Initializes the vector SHT Layer, precomputing the necessary quadrature weights Parameters: nlat: input grid resolution in the latitudinal direction nlon: input grid resolution in the longitudinal direction grid: type of grid the data lives on """ super().__init__() self.nlat = nlat self.nlon = nlon self.grid = grid self.norm = norm self.csphase = csphase # compute quadrature points if self.grid == "legendre-gauss": cost, w = legendre_gauss_weights(nlat, -1, 1) self.lmax = lmax or self.nlat elif self.grid == "lobatto": cost, w = lobatto_weights(nlat, -1, 1) self.lmax = lmax or self.nlat-1 elif self.grid == "equiangular": cost, w = clenshaw_curtiss_weights(nlat, -1, 1) # cost, w = fejer2_weights(nlat, -1, 1) self.lmax = lmax or self.nlat else: raise(ValueError("Unknown quadrature mode")) # get the comms grid: self.comm_size_polar = polar_group_size() self.comm_rank_polar = polar_group_rank() self.comm_size_azimuth = azimuth_group_size() self.comm_rank_azimuth = azimuth_group_rank() # apply cosine transform and flip them tq = np.flip(np.arccos(cost)) # determine the dimensions self.mmax = mmax or self.nlon // 2 + 1 # spatial paddings latdist = (self.nlat + self.comm_size_polar - 1) // self.comm_size_polar self.nlatpad = latdist * self.comm_size_polar - self.nlat londist = (self.nlon + self.comm_size_azimuth - 1) // self.comm_size_azimuth self.nlonpad = londist * self.comm_size_azimuth - self.nlon # frequency paddings ldist = (self.lmax + self.comm_size_polar - 1) // self.comm_size_polar self.lpad = ldist * self.comm_size_polar - self.lmax mdist = (self.mmax + self.comm_size_azimuth - 1) // self.comm_size_azimuth self.mpad = mdist * self.comm_size_azimuth - self.mmax weights = torch.from_numpy(w) dpct = precompute_dlegpoly(self.mmax, self.lmax, tq, norm=self.norm, csphase=self.csphase) # combine integration weights, normalization factor in to one: l = torch.arange(0, self.lmax) norm_factor = 1. / l / (l+1) norm_factor[0] = 1. weights = torch.einsum('dmlk,k,l->dmlk', dpct, weights, norm_factor) # since the second component is imaginary, we need to take complex conjugation into account weights[1] = -1 * weights[1] # we need to split in m, pad before: weights = F.pad(weights, [0, 0, 0, 0, 0, self.mpad], mode="constant") weights = torch.split(weights, (self.mmax+self.mpad) // self.comm_size_azimuth, dim=1)[self.comm_rank_azimuth] # remember quadrature weights self.register_buffer('weights', weights, persistent=False) # compute the local pad and size # spatial self.nlat_local = min(latdist, self.nlat - self.comm_rank_polar * latdist) self.nlatpad_local = latdist - self.nlat_local self.nlon_local = min(londist, self.nlon - self.comm_rank_azimuth * londist) self.nlonpad_local = londist - self.nlon_local # frequency self.lmax_local = min(ldist, self.lmax - self.comm_rank_polar * ldist) self.lpad_local = ldist - self.lmax_local self.mmax_local = min(mdist, self.mmax - self.comm_rank_azimuth * mdist) self.mpad_local = mdist - self.mmax_local def extra_repr(self): """ Pretty print module """ return f'nlat={self.nlat}, nlon={self.nlon},\n lmax={self.lmax}, mmax={self.mmax},\n grid={self.grid}, csphase={self.csphase}' def forward(self, x: torch.Tensor): assert(len(x.shape) >= 3) assert(x.shape[1] % self.comm_size_polar == 0) assert(x.shape[1] % self.comm_size_azimuth == 0) # h and w is split. First we make w local by transposing into channel dim if self.comm_size_azimuth > 1: xt = distributed_transpose_azimuth.apply(x, (1, -1)) else: xt = x # apply real fft in the longitudinal direction: make sure to truncate to nlon xtf = 2.0 * torch.pi * torch.fft.rfft(xt, n=self.nlon, dim=-1, norm="forward") # truncate xtft = xtf[..., :self.mmax] # pad the dim to allow for splitting xtfp = F.pad(xtft, [0, self.mpad], mode="constant") # transpose: after this, m is split and c is local if self.comm_size_azimuth > 1: y = distributed_transpose_azimuth.apply(xtfp, (-1, 1)) else: y = xtfp # transpose: after this, c is split and h is local if self.comm_size_polar > 1: yt = distributed_transpose_polar.apply(y, (1, -2)) else: yt = y # the input data might be padded, make sure to truncate to nlat: ytt = yt[..., :self.nlat, :] # do the Legendre-Gauss quadrature yttr = torch.view_as_real(ytt) # create output array yor = torch.zeros_like(yttr, dtype=yttr.dtype, device=yttr.device) # contraction - spheroidal component # real component yor[..., 0, :, :, 0] = torch.einsum('...km,mlk->...lm', yttr[..., 0, :, :, 0], self.weights[0].to(yttr.dtype)) \ - torch.einsum('...km,mlk->...lm', yttr[..., 1, :, :, 1], self.weights[1].to(yttr.dtype)) # iamg component yor[..., 0, :, :, 1] = torch.einsum('...km,mlk->...lm', yttr[..., 0, :, :, 1], self.weights[0].to(yttr.dtype)) \ + torch.einsum('...km,mlk->...lm', yttr[..., 1, :, :, 0], self.weights[1].to(yttr.dtype)) # contraction - toroidal component # real component yor[..., 1, :, :, 0] = - torch.einsum('...km,mlk->...lm', yttr[..., 0, :, :, 1], self.weights[1].to(yttr.dtype)) \ - torch.einsum('...km,mlk->...lm', yttr[..., 1, :, :, 0], self.weights[0].to(yttr.dtype)) # imag component yor[..., 1, :, :, 1] = torch.einsum('...km,mlk->...lm', yttr[..., 0, :, :, 0], self.weights[1].to(yttr.dtype)) \ - torch.einsum('...km,mlk->...lm', yttr[..., 1, :, :, 1], self.weights[0].to(yttr.dtype)) # pad if required yopr = F.pad(yor, [0, 0, 0, 0, 0, self.lpad], mode="constant") yop = torch.view_as_complex(yopr) # transpose: after this, l is split and c is local if self.comm_size_polar > 1: y = distributed_transpose_polar.apply(yop, (-2, 1)) else: y = yop return y class DistributedInverseRealVectorSHT(nn.Module): """ Defines a module for computing the inverse (real-valued) vector SHT. Precomputes Legendre Gauss nodes, weights and associated Legendre polynomials on these nodes. [1] Schaeffer, N. Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations, G3: Geochemistry, Geophysics, Geosystems. [2] Wang, B., Wang, L., Xie, Z.; Accurate calculation of spherical and vector spherical harmonic expansions via spectral element grids; Adv Comput Math. """ def __init__(self, nlat, nlon, lmax=None, mmax=None, grid="lobatto", norm="ortho", csphase=True): super().__init__() self.nlat = nlat self.nlon = nlon self.grid = grid self.norm = norm self.csphase = csphase # compute quadrature points if self.grid == "legendre-gauss": cost, _ = legendre_gauss_weights(nlat, -1, 1) self.lmax = lmax or self.nlat elif self.grid == "lobatto": cost, _ = lobatto_weights(nlat, -1, 1) self.lmax = lmax or self.nlat-1 elif self.grid == "equiangular": cost, _ = clenshaw_curtiss_weights(nlat, -1, 1) self.lmax = lmax or self.nlat else: raise(ValueError("Unknown quadrature mode")) self.comm_size_polar = polar_group_size() self.comm_rank_polar = polar_group_rank() self.comm_size_azimuth = azimuth_group_size() self.comm_rank_azimuth = azimuth_group_rank() # apply cosine transform and flip them t = np.flip(np.arccos(cost)) # determine the dimensions self.mmax = mmax or self.nlon // 2 + 1 # spatial paddings latdist = (self.nlat + self.comm_size_polar - 1) // self.comm_size_polar self.nlatpad = latdist * self.comm_size_polar - self.nlat londist = (self.nlon + self.comm_size_azimuth - 1) // self.comm_size_azimuth self.nlonpad = londist * self.comm_size_azimuth - self.nlon # frequency paddings ldist = (self.lmax + self.comm_size_polar - 1) // self.comm_size_polar self.lpad = ldist * self.comm_size_polar - self.lmax mdist = (self.mmax + self.comm_size_azimuth - 1) // self.comm_size_azimuth self.mpad = mdist * self.comm_size_azimuth - self.mmax # compute legende polynomials dpct = precompute_dlegpoly(self.mmax, self.lmax, t, norm=self.norm, inverse=True, csphase=self.csphase) # split in m pct = F.pad(pct, [0, 0, 0, 0, 0, self.mpad], mode="constant") pct = torch.split(pct, (self.mmax+self.mpad) // self.comm_size_azimuth, dim=0)[self.comm_rank_azimuth] # register buffer self.register_buffer('dpct', dpct, persistent=False) # compute the local pad and size # spatial self.nlat_local = min(latdist, self.nlat - self.comm_rank_polar * latdist) self.nlatpad_local = latdist - self.nlat_local self.nlon_local = min(londist, self.nlon - self.comm_rank_azimuth * londist) self.nlonpad_local = londist - self.nlon_local # frequency self.lmax_local = min(ldist, self.lmax - self.comm_rank_polar * ldist) self.lpad_local = ldist - self.lmax_local self.mmax_local = min(mdist, self.mmax - self.comm_rank_azimuth * mdist) self.mpad_local = mdist - self.mmax_local def extra_repr(self): """ Pretty print module """ return f'nlat={self.nlat}, nlon={self.nlon},\n lmax={self.lmax}, mmax={self.mmax},\n grid={self.grid}, csphase={self.csphase}' def forward(self, x: torch.Tensor): assert(x.shape[1] % self.comm_size_polar == 0) assert(x.shape[1] % self.comm_size_azimuth == 0) # transpose: after that, channels are split, l is local: if self.comm_size_polar > 1: xt = distributed_transpose_polar.apply(x, (1, -2)) else: xt = x # remove padding in l: xtt = xt[..., :self.lmax, :] # Evaluate associated Legendre functions on the output nodes xttr = torch.view_as_real(xtt) # contraction - spheroidal component # real component srl = torch.einsum('...lm,mlk->...km', xttr[..., 0, :, :, 0], self.dpct[0].to(xttr.dtype)) \ - torch.einsum('...lm,mlk->...km', xttr[..., 1, :, :, 1], self.dpct[1].to(xttr.dtype)) # imag component sim = torch.einsum('...lm,mlk->...km', xttr[..., 0, :, :, 1], self.dpct[0].to(xttr.dtype)) \ + torch.einsum('...lm,mlk->...km', xttr[..., 1, :, :, 0], self.dpct[1].to(xttr.dtype)) # contraction - toroidal component # real component trl = - torch.einsum('...lm,mlk->...km', xttr[..., 0, :, :, 1], self.dpct[1].to(xttr.dtype)) \ - torch.einsum('...lm,mlk->...km', xttr[..., 1, :, :, 0], self.dpct[0].to(xttr.dtype)) # imag component tim = torch.einsum('...lm,mlk->...km', xttr[..., 0, :, :, 0], self.dpct[1].to(xttr.dtype)) \ - torch.einsum('...lm,mlk->...km', xttr[..., 1, :, :, 1], self.dpct[0].to(xttr.dtype)) # reassemble s = torch.stack((srl, sim), -1) t = torch.stack((trl, tim), -1) xs = torch.stack((s, t), -4) # convert to complex x = torch.view_as_complex(xs) # transpose: after this, l is split and channels are local xp = F.pad(x, [0, 0, 0, self.nlatpad]) if self.comm_size_polar > 1: y = distributed_transpose_polar.apply(xp, (-2, 1)) else: y = xp # transpose: after this, channels are split and m is local if self.comm_size_azimuth > 1: yt = distributed_transpose_azimuth.apply(y, (1, -1)) else: yt = y # truncate ytt = yt[..., :self.mmax] # apply the inverse (real) FFT x = torch.fft.irfft(x, n=self.nlon, dim=-1, norm="forward") # pad before we transpose back xp = F.pad(x, [0, self.nlonpad]) # transpose: after this, m is split and channels are local if self.comm_size_azimuth > 1: out = distributed_transpose_azimuth.apply(xp, (-1, 1)) else: out = xp return out