# coding=utf-8 # SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ignore this (just for development without installation) import sys import os sys.path.append("..") sys.path.append(".") import torch import torch.distributed as dist import torch_harmonics as harmonics try: from tqdm import tqdm except: tqdm = lambda x : x # set up distributed world_size = int(os.getenv('WORLD_SIZE', 1)) world_rank = int(os.getenv('WORLD_RANK', 0)) port = int(os.getenv('MASTER_PORT', 0)) master_address = os.getenv('MASTER_ADDR', 'localhost') dist.init_process_group(backend = 'nccl', init_method = f"tcp://{master_address}:{port}", rank = world_rank, world_size = world_size) local_rank = world_rank % torch.cuda.device_count() mp_group = dist.new_group(ranks=list(range(world_size))) my_rank = dist.get_rank(mp_group) group_size = 1 if not dist.is_initialized() else dist.get_world_size(mp_group) if my_rank == 0: print(f"Running distributed test on {group_size} ranks.") # init distributed SHT: harmonics.distributed.init(mp_group) # everything is awesome on GPUs device = torch.device(f"cuda:{local_rank}") # create a batch with one sample and 21 channels b, c, n_theta, n_lambda = 1, 21, 360, 720 # your layers to play with forward_transform = harmonics.RealSHT(n_theta, n_lambda).to(device) inverse_transform = harmonics.InverseRealSHT(n_theta, n_lambda).to(device) forward_transform_equi = harmonics.RealSHT(n_theta, n_lambda, grid="equiangular").to(device) inverse_transform_equi = harmonics.InverseRealSHT(n_theta, n_lambda, grid="equiangular").to(device) signal_leggauss = inverse_transform(torch.randn(b, c, n_theta // group_size, n_theta+1, device=device, dtype=torch.complex128)) signal_equi = inverse_transform(torch.randn(b, c, n_theta // group_size, n_theta+1, device=device, dtype=torch.complex128)) # let's check the layers for num_iters in [1, 8, 64, 512]: base = signal_leggauss for iteration in tqdm(range(num_iters), disable=(my_rank!=0)): base = inverse_transform(forward_transform(base)) # compute error: numerator = torch.sum(torch.square(torch.abs(base-signal_leggauss)), dim=(-1,-2)) denominator = torch.sum(torch.square(torch.abs(signal_leggauss)), dim=(-1,-2)) if dist.is_initialized(): dist.all_reduce(numerator, group=mp_group) dist.all_reduce(denominator, group=mp_group) if my_rank == 0: print("relative l2 error accumulation on the legendre-gauss grid: ", torch.mean(torch.sqrt(numerator / denominator)).item(), "after", num_iters, "iterations") # let's check the equiangular layers for num_iters in [1, 8, 64, 512]: base = signal_equi for iteration in tqdm(range(num_iters), disable=(my_rank!=0)): base = inverse_transform_equi(forward_transform_equi(base)) # compute error numerator = torch.sum(torch.square(torch.abs(base-signal_equi)), dim=(-1,-2)) denominator = torch.sum(torch.square(torch.abs(signal_equi)), dim=(-1,-2)) if dist.is_initialized(): dist.all_reduce(numerator, group=mp_group) dist.all_reduce(denominator, group=mp_group) if my_rank == 0: print("relative l2 error accumulation with interpolation onto equiangular grid: ", torch.mean(torch.sqrt(numerator / denominator)).item(), "after", num_iters, "iterations")