# coding=utf-8 # SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # import torch import torch.nn as nn import torch.fft from torch.utils.checkpoint import checkpoint import math from torch_harmonics import * from ._activations import * def _no_grad_trunc_normal_(tensor, mean, std, a, b): # Cut & paste from PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): # Computes standard normal cumulative distribution function return (1. + math.erf(x / math.sqrt(2.))) / 2. if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " "The distribution of values may be incorrect.", stacklevel=2) with torch.no_grad(): # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * l - 1, 2 * u - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): r"""Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for generating the random values works best when :math:`a \leq \text{mean} \leq b`. Args: tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation of the normal distribution a: the minimum cutoff value b: the maximum cutoff value Examples: >>> w = torch.empty(3, 5) >>> nn.init.trunc_normal_(w) """ return _no_grad_trunc_normal_(tensor, mean, std, a, b) @torch.jit.script def drop_path(x: torch.Tensor, drop_prob: float = 0., training: bool = False) -> torch.Tensor: """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0. or not training: return x keep_prob = 1. - drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2d ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() # binarize output = x.div(keep_prob) * random_tensor return output class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) class MLP(nn.Module): def __init__(self, in_features, hidden_features = None, out_features = None, act_layer = nn.ReLU, output_bias = False, drop_rate = 0., checkpointing = False, gain = 1.0): super(MLP, self).__init__() self.checkpointing = checkpointing out_features = out_features or in_features hidden_features = hidden_features or in_features # Fist dense layer fc1 = nn.Conv2d(in_features, hidden_features, 1, bias=True) # initialize the weights correctly scale = math.sqrt(2.0 / in_features) nn.init.normal_(fc1.weight, mean=0., std=scale) if fc1.bias is not None: nn.init.constant_(fc1.bias, 0.0) # activation act = act_layer() # output layer fc2 = nn.Conv2d(hidden_features, out_features, 1, bias=output_bias) # gain factor for the output determines the scaling of the output init scale = math.sqrt(gain / hidden_features) nn.init.normal_(fc2.weight, mean=0., std=scale) if fc2.bias is not None: nn.init.constant_(fc2.bias, 0.0) if drop_rate > 0.: drop = nn.Dropout2d(drop_rate) self.fwd = nn.Sequential(fc1, act, drop, fc2, drop) else: self.fwd = nn.Sequential(fc1, act, fc2) @torch.jit.ignore def checkpoint_forward(self, x): return checkpoint(self.fwd, x) def forward(self, x): if self.checkpointing: return self.checkpoint_forward(x) else: return self.fwd(x) class RealFFT2(nn.Module): """ Helper routine to wrap FFT similarly to the SHT """ def __init__(self, nlat, nlon, lmax = None, mmax = None): super(RealFFT2, self).__init__() self.nlat = nlat self.nlon = nlon self.lmax = lmax or self.nlat self.mmax = mmax or self.nlon // 2 + 1 def forward(self, x): y = torch.fft.rfft2(x, dim=(-2, -1), norm="ortho") y = torch.cat((y[..., :math.ceil(self.lmax/2), :self.mmax], y[..., -math.floor(self.lmax/2):, :self.mmax]), dim=-2) return y class InverseRealFFT2(nn.Module): """ Helper routine to wrap FFT similarly to the SHT """ def __init__(self, nlat, nlon, lmax = None, mmax = None): super(InverseRealFFT2, self).__init__() self.nlat = nlat self.nlon = nlon self.lmax = lmax or self.nlat self.mmax = mmax or self.nlon // 2 + 1 def forward(self, x): return torch.fft.irfft2(x, dim=(-2, -1), s=(self.nlat, self.nlon), norm="ortho") class SpectralConvS2(nn.Module): """ Spectral Convolution according to Driscoll & Healy. Designed for convolutions on the two-sphere S2 using the Spherical Harmonic Transforms in torch-harmonics, but supports convolutions on the periodic domain via the RealFFT2 and InverseRealFFT2 wrappers. """ def __init__(self, forward_transform, inverse_transform, in_channels, out_channels, gain = 2., operator_type = "driscoll-healy", lr_scale_exponent = 0, bias = False): super().__init__() self.forward_transform = forward_transform self.inverse_transform = inverse_transform self.modes_lat = self.inverse_transform.lmax self.modes_lon = self.inverse_transform.mmax self.scale_residual = (self.forward_transform.nlat != self.inverse_transform.nlat) \ or (self.forward_transform.nlon != self.inverse_transform.nlon) # remember factorization details self.operator_type = operator_type assert self.inverse_transform.lmax == self.modes_lat assert self.inverse_transform.mmax == self.modes_lon weight_shape = [out_channels, in_channels] if self.operator_type == "diagonal": weight_shape += [self.modes_lat, self.modes_lon] self.contract_func = "...ilm,oilm->...olm" elif self.operator_type == "block-diagonal": weight_shape += [self.modes_lat, self.modes_lon, self.modes_lon] self.contract_func = "...ilm,oilnm->...oln" elif self.operator_type == "driscoll-healy": weight_shape += [self.modes_lat] self.contract_func = "...ilm,oil->...olm" else: raise NotImplementedError(f"Unkonw operator type f{self.operator_type}") # form weight tensors scale = math.sqrt(gain / in_channels) self.weight = nn.Parameter(scale * torch.randn(*weight_shape, dtype=torch.complex64)) if bias: self.bias = nn.Parameter(torch.zeros(1, out_channels, 1, 1)) def forward(self, x): dtype = x.dtype x = x.float() residual = x with torch.autocast(device_type="cuda", enabled=False): x = self.forward_transform(x) if self.scale_residual: residual = self.inverse_transform(x) x = torch.einsum(self.contract_func, x, self.weight) with torch.autocast(device_type="cuda", enabled=False): x = self.inverse_transform(x) if hasattr(self, "bias"): x = x + self.bias x = x.type(dtype) return x, residual