# coding=utf-8 # SPDX-FileCopyrightText: Copyright (c) 2025 The torch-harmonics Authors. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # from typing import Optional, Tuple import torch import torch.nn as nn from torch_harmonics.quadrature import _precompute_latitudes from .losses import get_quadrature_weights # routine to compute multiclass labels on the sphere # the routine follows the implementation in # https://github.com/qubvel-org/segmentation_models.pytorch/blob/4aa36c6ad13f8a12552e4ea4131af2a86e564962/segmentation_models_pytorch/metrics/functional.py # but uses quadrature weights def _get_stats_multiclass( output: torch.LongTensor, target: torch.LongTensor, num_classes: int, quad_weights: torch.Tensor, ignore_index: Optional[int], ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: """ Compute multiclass statistics (TP, FP, FN, TN) on the sphere using quadrature weights. This function computes true positives, false positives, false negatives, and true negatives for multiclass classification on spherical data, properly weighted by quadrature weights to account for the spherical geometry. Parameters ----------- output : torch.LongTensor Predicted class labels target : torch.LongTensor Ground truth class labels num_classes : int Number of classes in the classification task quad_weights : torch.Tensor Quadrature weights for spherical integration ignore_index : Optional[int] Index to ignore in the computation (e.g., for padding or invalid regions) Returns ------- Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor] Tuple containing (tp_count, fp_count, fn_count, tn_count) for each class """ batch_size, *dims = output.shape num_elements = torch.prod(torch.tensor(dims)).long() if ignore_index is not None: ignore = target == ignore_index output = torch.where(ignore, -1, output) target = torch.where(ignore, -1, target) ignore_per_sample = ignore.view(batch_size, -1).sum(1) tp_count = torch.zeros(batch_size, num_classes, dtype=torch.float32, device=output.device) fp_count = torch.zeros(batch_size, num_classes, dtype=torch.float32, device=output.device) fn_count = torch.zeros(batch_size, num_classes, dtype=torch.float32, device=output.device) tn_count = torch.zeros(batch_size, num_classes, dtype=torch.float32, device=output.device) matched = target == output not_matched = target != output for i in range(batch_size): matched_i = matched[i, ...] not_matched_i = not_matched[i, ...] target_i = target[i, ...] output_i = output[i, ...] for c in range(num_classes): # compute weights qwt_c = quad_weights[target_i == c] qwo_c = quad_weights[output_i == c] # true positives tp_count[i, c] = torch.sum(matched_i[target_i == c] * qwt_c) # false positives fp_count[i, c] = torch.sum(not_matched_i[output_i == c] * qwo_c) # false negatives fn_count[i, c] = torch.sum(not_matched_i[target_i == c] * qwt_c) # true negatives is the leftovers tn_count = torch.sum(quad_weights) - tp_count - fp_count - fn_count return tp_count, fp_count, fn_count, tn_count def _predict_classes(logits: torch.Tensor) -> torch.Tensor: """ Convert logits to class predictions using softmax and argmax. Parameters ----------- logits : torch.Tensor Input logits tensor Returns ------- torch.Tensor Predicted class labels """ return torch.argmax(torch.softmax(logits, dim=1), dim=1, keepdim=False) class BaseMetricS2(nn.Module): """ Base class for spherical metrics that properly handle spherical geometry. This class provides the foundation for computing metrics on spherical data by using quadrature weights to account for the non-uniform area distribution on the sphere. Parameters ----------- nlat : int Number of latitude points nlon : int Number of longitude points grid : str, optional Grid type ("equiangular", "legendre-gauss", etc.), by default "equiangular" weight : torch.Tensor, optional Class weights for weighted averaging, by default None ignore_index : int, optional Index to ignore in computations, by default -100 mode : str, optional Averaging mode ("micro" or "macro"), by default "micro" """ def __init__(self, nlat: int, nlon: int, grid: str = "equiangular", weight: torch.Tensor = None, ignore_index: int = -100, mode: str = "micro"): super().__init__() self.ignore_index = ignore_index self.mode = mode # area weights q = get_quadrature_weights(nlat=nlat, nlon=nlon, grid=grid, tile=True) self.register_buffer("quad_weights", q) if weight is None: self.weight = None else: self.register_buffer("weight", weight.unsqueeze(0)) def _forward(self, pred: torch.Tensor, truth: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: # convert logits to class predictions pred_class = _predict_classes(pred) # get true positive, false positive, etc tp, fp, fn, tn = _get_stats_multiclass(pred_class, truth, pred.shape[1], self.quad_weights, self.ignore_index) # compute averages: if self.mode == "micro": if self.weight is not None: # weighted average tp = torch.sum(tp * self.weight) fp = torch.sum(fp * self.weight) fn = torch.sum(fn * self.weight) tn = torch.sum(tn * self.weight) else: # normal average tp = torch.mean(tp) fp = torch.mean(fp) fn = torch.mean(fn) tn = torch.mean(tn) else: tp = torch.mean(tp, dim=0) fp = torch.mean(fp, dim=0) fn = torch.mean(fn, dim=0) tn = torch.mean(tn, dim=0) return tp, fp, fn, tn class IntersectionOverUnionS2(BaseMetricS2): """ Intersection over Union (IoU) metric for spherical data. Computes the IoU score for multiclass classification on the sphere, properly weighted by quadrature weights to account for spherical geometry. Parameters ----------- nlat : int Number of latitude points nlon : int Number of longitude points grid : str, optional Grid type ("equiangular", "legendre-gauss", etc.), by default "equiangular" weight : torch.Tensor, optional Class weights for weighted averaging, by default None ignore_index : int, optional Index to ignore in computations, by default -100 mode : str, optional Averaging mode ("micro" or "macro"), by default "micro" """ def __init__(self, nlat: int, nlon: int, grid: str = "equiangular", weight: torch.Tensor = None, ignore_index: int = -100, mode: str = "micro"): super().__init__(nlat, nlon, grid, weight, ignore_index, mode) def forward(self, pred: torch.Tensor, truth: torch.Tensor) -> torch.Tensor: tp, fp, fn, tn = self._forward(pred, truth) # compute score score = tp / (tp + fp + fn) if self.mode == "macro": # we need to do some averaging still: # be careful with zeros score = torch.where(torch.isnan(score), 0.0, score) if self.weight is not None: score = torch.sum(score * self.weight) else: score = torch.mean(score) return score class AccuracyS2(BaseMetricS2): """ Accuracy metric for spherical data. Computes the accuracy score for multiclass classification on the sphere, properly weighted by quadrature weights to account for spherical geometry. Parameters ----------- nlat : int Number of latitude points nlon : int Number of longitude points grid : str, optional Grid type ("equiangular", "legendre-gauss", etc.), by default "equiangular" weight : torch.Tensor, optional Class weights for weighted averaging, by default None ignore_index : int, optional Index to ignore in computations, by default -100 mode : str, optional Averaging mode ("micro" or "macro"), by default "micro" """ def __init__(self, nlat: int, nlon: int, grid: str = "equiangular", weight: torch.Tensor = None, ignore_index: int = -100, mode: str = "micro"): super().__init__(nlat, nlon, grid, weight, ignore_index, mode) def forward(self, pred: torch.Tensor, truth: torch.Tensor) -> torch.Tensor: tp, fp, fn, tn = self._forward(pred, truth) # compute score score = (tp + tn) / (tp + fp + fn + tn) if self.mode == "macro": # we need to do some averaging still: # be careful with zeros score = torch.where(torch.isnan(score), 0.0, score) if self.weight is not None: score = torch.sum(score * self.weight) else: score = torch.mean(score) return score