# coding=utf-8 # SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # import abc import math import torch import torch.nn as nn import torch.fft from torch.utils.checkpoint import checkpoint from torch_harmonics import InverseRealSHT def _no_grad_trunc_normal_(tensor, mean, std, a, b): # Cut & paste from PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): # Computes standard normal cumulative distribution function return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " "The distribution of values may be incorrect.", stacklevel=2) with torch.no_grad(): # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * l - 1, 2 * u - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.0)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0): r"""Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for generating the random values works best when :math:`a \leq \text{mean} \leq b`. Args: tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation of the normal distribution a: the minimum cutoff value b: the maximum cutoff value Examples: >>> w = torch.empty(3, 5) >>> nn.init.trunc_normal_(w) """ return _no_grad_trunc_normal_(tensor, mean, std, a, b) @torch.jit.script def drop_path(x: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return x keep_prob = 1.0 - drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2d ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() # binarize output = x.div(keep_prob) * random_tensor return output class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) class PatchEmbed(nn.Module): def __init__(self, img_size=(224, 224), patch_size=(16, 16), in_chans=3, embed_dim=768): super(PatchEmbed, self).__init__() self.red_img_size = ((img_size[0] // patch_size[0]), (img_size[1] // patch_size[1])) num_patches = self.red_img_size[0] * self.red_img_size[1] self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=True) self.proj.weight.is_shared_mp = ["spatial"] self.proj.bias.is_shared_mp = ["spatial"] def forward(self, x): # gather input B, C, H, W = x.shape assert H == self.img_size[0] and W == self.img_size[1], f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." # new: B, C, H*W x = self.proj(x).flatten(2) return x class MLP(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.ReLU, output_bias=False, drop_rate=0.0, checkpointing=False, gain=1.0): super(MLP, self).__init__() self.checkpointing = checkpointing out_features = out_features or in_features hidden_features = hidden_features or in_features # Fist dense layer fc1 = nn.Conv2d(in_features, hidden_features, 1, bias=True) # initialize the weights correctly scale = math.sqrt(2.0 / in_features) nn.init.normal_(fc1.weight, mean=0.0, std=scale) if fc1.bias is not None: nn.init.constant_(fc1.bias, 0.0) # activation act = act_layer() # output layer fc2 = nn.Conv2d(hidden_features, out_features, 1, bias=output_bias) # gain factor for the output determines the scaling of the output init scale = math.sqrt(gain / hidden_features) nn.init.normal_(fc2.weight, mean=0.0, std=scale) if fc2.bias is not None: nn.init.constant_(fc2.bias, 0.0) if drop_rate > 0.0: drop = nn.Dropout2d(drop_rate) self.fwd = nn.Sequential(fc1, act, drop, fc2, drop) else: self.fwd = nn.Sequential(fc1, act, fc2) @torch.jit.ignore def checkpoint_forward(self, x): return checkpoint(self.fwd, x) def forward(self, x): if self.checkpointing: return self.checkpoint_forward(x) else: return self.fwd(x) class RealFFT2(nn.Module): """ Helper routine to wrap FFT similarly to the SHT """ def __init__(self, nlat, nlon, lmax=None, mmax=None): super(RealFFT2, self).__init__() self.nlat = nlat self.nlon = nlon self.lmax = lmax or self.nlat self.mmax = mmax or self.nlon // 2 + 1 def forward(self, x): y = torch.fft.rfft2(x, dim=(-2, -1), norm="ortho") y = torch.cat((y[..., : math.ceil(self.lmax / 2), : self.mmax], y[..., -math.floor(self.lmax / 2) :, : self.mmax]), dim=-2) return y class InverseRealFFT2(nn.Module): """ Helper routine to wrap FFT similarly to the SHT """ def __init__(self, nlat, nlon, lmax=None, mmax=None): super(InverseRealFFT2, self).__init__() self.nlat = nlat self.nlon = nlon self.lmax = lmax or self.nlat self.mmax = mmax or self.nlon // 2 + 1 def forward(self, x): return torch.fft.irfft2(x, dim=(-2, -1), s=(self.nlat, self.nlon), norm="ortho") class LayerNorm(nn.Module): """ Wrapper class that moves the channel dimension to the end """ def __init__(self, in_channels, eps=1e-05, elementwise_affine=True, bias=True, device=None, dtype=None): super().__init__() self.channel_dim = -3 self.norm = nn.LayerNorm(normalized_shape=in_channels, eps=1e-6, elementwise_affine=elementwise_affine, bias=bias, device=device, dtype=dtype) def forward(self, x): return self.norm(x.transpose(self.channel_dim, -1)).transpose(-1, self.channel_dim) class SpectralConvS2(nn.Module): """ Spectral Convolution according to Driscoll & Healy. Designed for convolutions on the two-sphere S2 using the Spherical Harmonic Transforms in torch-harmonics, but supports convolutions on the periodic domain via the RealFFT2 and InverseRealFFT2 wrappers. """ def __init__(self, forward_transform, inverse_transform, in_channels, out_channels, gain=2.0, operator_type="driscoll-healy", lr_scale_exponent=0, bias=False): super().__init__() self.forward_transform = forward_transform self.inverse_transform = inverse_transform self.modes_lat = self.inverse_transform.lmax self.modes_lon = self.inverse_transform.mmax self.scale_residual = (self.forward_transform.nlat != self.inverse_transform.nlat) or (self.forward_transform.nlon != self.inverse_transform.nlon) # remember factorization details self.operator_type = operator_type assert self.inverse_transform.lmax == self.modes_lat assert self.inverse_transform.mmax == self.modes_lon weight_shape = [out_channels, in_channels] if self.operator_type == "diagonal": weight_shape += [self.modes_lat, self.modes_lon] self.contract_func = "...ilm,oilm->...olm" elif self.operator_type == "block-diagonal": weight_shape += [self.modes_lat, self.modes_lon, self.modes_lon] self.contract_func = "...ilm,oilnm->...oln" elif self.operator_type == "driscoll-healy": weight_shape += [self.modes_lat] self.contract_func = "...ilm,oil->...olm" else: raise NotImplementedError(f"Unkonw operator type f{self.operator_type}") # form weight tensors scale = math.sqrt(gain / in_channels) self.weight = nn.Parameter(scale * torch.randn(*weight_shape, dtype=torch.complex64)) if bias: self.bias = nn.Parameter(torch.zeros(1, out_channels, 1, 1)) def forward(self, x): dtype = x.dtype x = x.float() residual = x with torch.autocast(device_type="cuda", enabled=False): x = self.forward_transform(x) if self.scale_residual: residual = self.inverse_transform(x) x = torch.einsum(self.contract_func, x, self.weight) with torch.autocast(device_type="cuda", enabled=False): x = self.inverse_transform(x) if hasattr(self, "bias"): x = x + self.bias x = x.type(dtype) return x, residual class PositionEmbedding(nn.Module, metaclass=abc.ABCMeta): """ Returns standard sequence based position embedding """ def __init__(self, img_shape=(480, 960), grid="equiangular", num_chans=1): super().__init__() self.img_shape = img_shape self.num_chans = num_chans def forward(self, x: torch.Tensor): return x + self.position_embeddings class SequencePositionEmbedding(PositionEmbedding): """ Returns standard sequence based position embedding """ def __init__(self, img_shape=(480, 960), grid="equiangular", num_chans=1): super().__init__(img_shape=img_shape, grid=grid, num_chans=num_chans) with torch.no_grad(): # alternating custom position embeddings pos = torch.arange(self.img_shape[0] * self.img_shape[1]).reshape(1, 1, *self.img_shape).repeat(1, self.num_chans, 1, 1) k = torch.arange(self.num_chans).reshape(1, self.num_chans, 1, 1) denom = torch.pow(10000, 2 * k / self.num_chans) pos_embed = torch.where(k % 2 == 0, torch.sin(pos / denom), torch.cos(pos / denom)) # register tensor self.register_buffer("position_embeddings", pos_embed.float()) class SpectralPositionEmbedding(PositionEmbedding): """ Returns position embeddings for the spherical transformer """ def __init__(self, img_shape=(480, 960), grid="equiangular", num_chans=1): super().__init__(img_shape=img_shape, grid=grid, num_chans=num_chans) # compute maximum required frequency and prepare isht lmax = math.floor(math.sqrt(self.num_chans)) + 1 isht = InverseRealSHT(nlat=self.img_shape[0], nlon=self.img_shape[1], lmax=lmax, mmax=lmax, grid=grid) # fill position embedding with torch.no_grad(): pos_embed_freq = torch.zeros(1, self.num_chans, isht.lmax, isht.mmax, dtype=torch.complex64) for i in range(self.num_chans): l = math.floor(math.sqrt(i)) m = i - l**2 - l if m < 0: pos_embed_freq[0, i, l, -m] = 1.0j else: pos_embed_freq[0, i, l, m] = 1.0 # compute spatial position embeddings pos_embed = isht(pos_embed_freq) # normalization pos_embed = pos_embed / torch.amax(pos_embed.abs(), dim=(-1, -2), keepdim=True) # register tensor self.register_buffer("position_embeddings", pos_embed) class LearnablePositionEmbedding(PositionEmbedding): """ Returns position embeddings for the spherical transformer """ def __init__(self, img_shape=(480, 960), grid="equiangular", num_chans=1, embed_type="lat"): super().__init__(img_shape=img_shape, grid=grid, num_chans=num_chans) if embed_type == "latlon": self.position_embeddings = nn.Parameter(torch.zeros(1, self.num_chans, self.img_shape[0], self.img_shape[1])) elif embed_type == "lat": self.position_embeddings = nn.Parameter(torch.zeros(1, self.num_chans, self.img_shape[0], 1)) else: raise ValueError(f"Unknown learnable position embedding type {embed_type}") # class SpiralPositionEmbedding(PositionEmbedding): # """ # Returns position embeddings on the torus # """ # def __init__(self, img_shape=(480, 960), grid="equiangular", num_chans=1): # super().__init__(img_shape=img_shape, grid=grid, num_chans=num_chans) # with torch.no_grad(): # # alternating custom position embeddings # lats, _ = _precompute_latitudes(img_shape[0], grid=grid) # lats = lats.reshape(-1, 1) # lons = torch.linspace(0, 2 * math.pi, img_shape[1] + 1)[:-1] # lons = lons.reshape(1, -1) # # channel index # k = torch.arange(self.num_chans).reshape(1, -1, 1, 1) # pos_embed = torch.where(k % 2 == 0, torch.sin(k * (lons + lats)), torch.cos(k * (lons - lats))) # # register tensor # self.register_buffer("position_embeddings", pos_embed.float())