@@ -38,24 +38,41 @@ from torch_harmonics.legendre import _precompute_legpoly, _precompute_dlegpoly
classRealSHT(nn.Module):
r"""
"""
Defines a module for computing the forward (real-valued) SHT.
Precomputes Legendre Gauss nodes, weights and associated Legendre polynomials on these nodes.
The SHT is applied to the last two dimensions of the input
Parameters
-----------
nlat: int
Number of latitude points
nlon: int
Number of longitude points
lmax: int
Maximum spherical harmonic degree
mmax: int
Maximum spherical harmonic order
grid: str
Grid type ("equiangular", "legendre-gauss", "lobatto", "equidistant"), by default "equiangular"
norm: str
Normalization type ("ortho", "schmidt", "unnorm"), by default "ortho"
csphase: bool
Whether to apply the Condon-Shortley phase factor, by default True
Returns
-------
x: torch.Tensor
Tensor of shape (..., lmax, mmax)
References
----------
[1] Schaeffer, N. Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations, G3: Geochemistry, Geophysics, Geosystems.
[2] Wang, B., Wang, L., Xie, Z.; Accurate calculation of spherical and vector spherical harmonic expansions via spectral element grids; Adv Comput Math.
Defines a module for computing the inverse (real-valued) SHT.
Precomputes Legendre Gauss nodes, weights and associated Legendre polynomials on these nodes.
nlat, nlon: Output dimensions
lmax, mmax: Input dimensions (spherical coefficients). For convenience, these are inferred from the output dimensions
Parameters
-----------
nlat: int
Number of latitude points
nlon: int
Number of longitude points
lmax: int
Maximum spherical harmonic degree
mmax: int
Maximum spherical harmonic order
grid: str
Grid type ("equiangular", "legendre-gauss", "lobatto", "equidistant"), by default "equiangular"
norm: str
Normalization type ("ortho", "schmidt", "unnorm"), by default "ortho"
csphase: bool
Whether to apply the Condon-Shortley phase factor, by default True
Raises
------
ValueError: If the grid type is unknown
Returns
-------
x: torch.Tensor
Tensor of shape (..., lmax, mmax)
References
----------
[1] Schaeffer, N. Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations, G3: Geochemistry, Geophysics, Geosystems.
[2] Wang, B., Wang, L., Xie, Z.; Accurate calculation of spherical and vector spherical harmonic expansions via spectral element grids; Adv Comput Math.
"""
...
...
@@ -180,9 +220,6 @@ class InverseRealSHT(nn.Module):
@@ -213,24 +250,41 @@ class InverseRealSHT(nn.Module):
classRealVectorSHT(nn.Module):
r"""
"""
Defines a module for computing the forward (real) vector SHT.
Precomputes Legendre Gauss nodes, weights and associated Legendre polynomials on these nodes.
The SHT is applied to the last three dimensions of the input.
Parameters
-----------
nlat: int
Number of latitude points
nlon: int
Number of longitude points
lmax: int
Maximum spherical harmonic degree
mmax: int
Maximum spherical harmonic order
grid: str
Grid type ("equiangular", "legendre-gauss", "lobatto", "equidistant"), by default "equiangular"
norm: str
Normalization type ("ortho", "schmidt", "unnorm"), by default "ortho"
csphase: bool
Whether to apply the Condon-Shortley phase factor, by default True
Returns
-------
x: torch.Tensor
Tensor of shape (..., lmax, mmax)
References
----------
[1] Schaeffer, N. Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations, G3: Geochemistry, Geophysics, Geosystems.
[2] Wang, B., Wang, L., Xie, Z.; Accurate calculation of spherical and vector spherical harmonic expansions via spectral element grids; Adv Comput Math.
@@ -322,10 +373,34 @@ class RealVectorSHT(nn.Module):
classInverseRealVectorSHT(nn.Module):
r"""
"""
Defines a module for computing the inverse (real-valued) vector SHT.
Precomputes Legendre Gauss nodes, weights and associated Legendre polynomials on these nodes.
Parameters
-----------
nlat: int
Number of latitude points
nlon: int
Number of longitude points
lmax: int
Maximum spherical harmonic degree
mmax: int
Maximum spherical harmonic order
grid: str
Grid type ("equiangular", "legendre-gauss", "lobatto", "equidistant"), by default "equiangular"
norm: str
Normalization type ("ortho", "schmidt", "unnorm"), by default "ortho"
csphase: bool
Whether to apply the Condon-Shortley phase factor, by default True
Returns
-------
x: torch.Tensor
Tensor of shape (..., lmax, mmax)
References
----------
[1] Schaeffer, N. Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations, G3: Geochemistry, Geophysics, Geosystems.
[2] Wang, B., Wang, L., Xie, Z.; Accurate calculation of spherical and vector spherical harmonic expansions via spectral element grids; Adv Comput Math.
"""
...
...
@@ -365,9 +440,6 @@ class InverseRealVectorSHT(nn.Module):